Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(x\ge1\)
\(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow\left(x-1\right)-2\sqrt{x-1}+1=16\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=4\\\sqrt{x-1}-1=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=5\\\sqrt{x-1}=-3\left(vl\right)\end{cases}\Rightarrow}x-1=25\Rightarrow x=26\)
b) đk: \(x\ge\frac{9}{2}\)
\(x-\sqrt{2x-9}=6\)
\(\Leftrightarrow x-6=\sqrt{2x-9}\)
\(\Leftrightarrow\left(x-6\right)^2=\left|2x-9\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-9=\left(x-6\right)^2\\2x-9=-\left(x-6\right)^2\end{cases}}\)
+ Nếu: \(2x-9=\left(x-6\right)^2\)
\(\Leftrightarrow x^2-14x+45=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=9\end{cases}}\), thử lại thấy chỉ có x = 9 thỏa mãn
+ Nếu: \(2x-9=-\left(x-6\right)^2\)
\(\Leftrightarrow x^2-10x+27=0\)
\(\Leftrightarrow\left(x-5\right)^2=-2\) (vô lý)
Vậy x = 9
1)
ĐK: \(x\geq 2\)
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)
\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)
Vậy $x=2$ là nghiệm của pt
2) ĐK: \(x\geq 1\)
Ta có: \(x+\sqrt{x-1}=13\)
\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)
\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)
Vì \(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)
\(\Rightarrow \sqrt{x-1}=3\)
\(\Rightarrow x=3^2+1=10\) (thỏa mãn)
Vậy.......