Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
HPT \( \Leftrightarrow \left\{\begin{matrix} \sqrt{2}y=6-(m+2018)x\\ 4x+(m+2018).\sqrt{2}y=9\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow 4x+(m+2018)[6-(m+2018)x]=9\sqrt{2}\)
\(\Leftrightarrow x[4-(m+2018)^2]=9\sqrt{2}-6(m+2018)\)
\(\Leftrightarrow -x(m+2020)(m+2016)=9\sqrt{2}-6(m+2018)(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất
Điều này xảy ra khi $(m+2020)(m+2016)\neq 0$
$\Leftrightarrow m\neq -2020$ và $m\neq -2016$
Lời giải:
HPT \( \Leftrightarrow \left\{\begin{matrix} \sqrt{2}y=6-(m+2018)x\\ 4x+(m+2018).\sqrt{2}y=9\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow 4x+(m+2018)[6-(m+2018)x]=9\sqrt{2}\)
\(\Leftrightarrow x[4-(m+2018)^2]=9\sqrt{2}-6(m+2018)\)
\(\Leftrightarrow -x(m+2020)(m+2016)=9\sqrt{2}-6(m+2018)(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất
Điều này xảy ra khi $(m+2020)(m+2016)\neq 0$
$\Leftrightarrow m\neq -2020$ và $m\neq -2016$
\(4x+2y+2z-4\sqrt{xy}-4\sqrt{xz}+2\sqrt{yz}-10\sqrt{z}-6\sqrt{y}+34=0\)
\(\Rightarrow\left(4x-4\sqrt{xy}-4\sqrt{xz}+y+z+2\sqrt{yz}\right)+\left(y-6\sqrt{y}+9\right)+\left(z-10\sqrt{z}+25\right)=0\)
\(\Rightarrow\left(2\sqrt{x}-\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-5\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\hept{\begin{cases}\left(2\sqrt{x}-\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{y}-3\right)^2=0\\\left(\sqrt{z}-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=9\\z=25\end{cases}}\)
Thay vào M,ta được
\(M=\left(16-15\right)^9+\left(9-8\right)^6+\left(25-24\right)^{2018}=3\)
Hình như đề phải là \(\left(z-24\right)^{2018}\)
Đặt: \(\sqrt{x+9}=v;\sqrt{x+6}=u\)
Ta có: \(v+5u=5+vu\)
\(\Leftrightarrow v+5u-5-uv=0\)
\(\Leftrightarrow-v\left(u-1\right)+5\left(u-1\right)\)
\(\Leftrightarrow\left(5-v\right)\left(u-1\right)\)
\(\left\{{}\begin{matrix}5-v=0\Leftrightarrow5=\sqrt{x+9}\Leftrightarrow x=16\left(N\right)\\u-1=0\Leftrightarrow\sqrt{x+6}=1\Leftrightarrow x=-5\left(L\right)\end{matrix}\right.\) ĐKXĐ:\(x>=-6\)
\(S=\left\{16\right\}\)
Đặt:\(\sqrt{x+9}=v;\sqrt{x+6}=u\)
Ta có: \(v+5u=5+vu\Leftrightarrow-v\left(u-1\right)+5\left(u-1\right)\Leftrightarrow\left(5-v\right)\left(u-1\right)\)
\(\left\{{}\begin{matrix}5-v=0\Leftrightarrow5=\sqrt{x+9}\Leftrightarrow x=16\left(N\right)\\u-1=0\Leftrightarrow\sqrt{x+6}=1\Leftrightarrow x=-5\left(N\right)\end{matrix}\right.ĐKXĐ:x>=-6\)
\(S=\left\{16,-5\right\}\)
Câu trên mình quên -5>-6
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)