K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 5 2020

a/ Với \(x=\left\{2;3\right\}\) là nghiệm

- Với \(x>3\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2>1\end{matrix}\right.\) \(\Rightarrow VT>1\Rightarrow VT>VP\)

Phương trình vô nghiệm

- Với \(x< 2\) viết lại pt: \(\left(2-x\right)^4+\left(3-x\right)^4=1\)

\(\left\{{}\begin{matrix}2-x>0\\3-x>1\end{matrix}\right.\) \(\Rightarrow VT>1\Rightarrow VT>VP\Rightarrow\) ptvn

- Với \(2< x< 3\) viết lại pt: \(\left(x-2\right)^4+\left(3-x\right)^4=1\)

\(\left\{{}\begin{matrix}0< x-2< 1\\0< 3-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^4< x-2\\\left(3-x\right)^4< 3-x\end{matrix}\right.\)

\(\Rightarrow VT< x-2+3-x\Rightarrow VT< 1\Rightarrow VT< VP\Rightarrow\) ptvn

Vậy pt có 2 nghiệm: \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b/ Đặt \(\left\{{}\begin{matrix}2x-5=a\\x+1=b\end{matrix}\right.\) \(\Rightarrow3x-4=a+b\)

\(a^3-\left(a+b\right)^3+b^3=0\)

\(\Leftrightarrow a^3+b^3-\left[a^3+b^3+3ab\left(a+b\right)\right]=0\)

\(\Leftrightarrow ab\left(a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x+1=0\\3x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{matrix}\right.\)

30 tháng 3 2020

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

15 tháng 3 2019

sáng mai chị làm cho

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc

8 tháng 2 2019

Bài 1 :

\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)

\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

Đặt \(a=x^2+6x-7\)

\(A=a\left(a-9\right)+8\)

\(A=a^2-9a+8\)

\(A=a^2-8a-a+8\)

\(A=a\left(a-8\right)-\left(a-8\right)\)

\(A=\left(a-8\right)\left(a-1\right)\)

Thay a vào là xong bạn :)

cảm ớn phương nhiều

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)