K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)

5 tháng 12 2017

\(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2-y=2x^2\\xy^2-1=-2x^2\end{matrix}\right.\)

☘ Cộng vế theo vế

\(\Rightarrow x^2y^2-1+xy^2-y=0\)

\(\Leftrightarrow\left(xy-1\right)\left(xy+1\right)+y\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(xy+1+y\right)=0\)

☘ Trường hợp 1: xy = 1 \(\Leftrightarrow x=\dfrac{1}{y}\)

☘ Trường hợp 2: \(xy+1+y=0\) \(\Leftrightarrow x=-\dfrac{1+y}{y}\)

⚠ Thay vào 1 trong 2 phương trình đề bài cho rồi làm tiếp nhé.

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
8 tháng 11 2018

Đặt \(\left\{{}\begin{matrix}x\sqrt{y}=a\\y\sqrt{x}=b\end{matrix}\right.\)

Hpt \(\Leftrightarrow\left\{{}\begin{matrix}a+b=6\\a^2+b^2=20\end{matrix}\right.\)

=> Hệ đối xứng loại 1 => EZ

9 tháng 11 2018

Đặt \(\left\{{}\begin{matrix}a=x\sqrt{y}\\b=\sqrt{x}.y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=6\\a^2+b^2=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^2+\left(6-a\right)^2=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\2a^2-12a+16=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\\left[{}\begin{matrix}a=4\\b=2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\\\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\end{matrix}\right.\)

Trường hợp \(\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\sqrt{y}=4\\y\sqrt{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\sqrt{y}=2\sqrt{x}.y\\y\sqrt{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\sqrt{y}-2\sqrt{x}.y=0\\y\sqrt{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{xy}\left(\sqrt{x}-2\sqrt{y}\right)=0\\y\sqrt{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\sqrt{y}\\\sqrt{x}.y=2\end{matrix}\right.\)( vì \(\sqrt{xy}\ne0\) )

\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\\sqrt{4y}.y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\y\sqrt{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4\end{matrix}\right.\)

TRường hợp 2 tương tự nha

5 tháng 12 2017

\(\left\{{}\begin{matrix}x^2y+2=y^2\\xy^2+2=x^2\end{matrix}\right.\)

☘ Trừ vế theo vế

\(\Rightarrow x^2y-xy^2=y^2-x^2\)

\(\Leftrightarrow xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+xy\right)=0\)

Trường hợp 1: \(x=y\)

Trường hợp 2: \(x+y+xy=0\)

\(\Leftrightarrow y\left(1+x\right)=-x\)

\(\Leftrightarrow y=-\dfrac{x}{1+x}\) thay vào phương trình thứ 2

\(\Rightarrow x\left(-\dfrac{x}{1+x}\right)^2+2=x^2\)

\(\Leftrightarrow x^3+2\left(1+x\right)^2-x^2\left(1+x\right)^2=0\)

\(\Leftrightarrow x^4+x^3-x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2-x-1\right)=0\)

⚠ Tự giải tiếp nha. Mà chưa học hệ phương trình đối xưng gì đó nên không chắc đâu.

5 tháng 12 2017

Lấy pt (1)-pt(2) ta có:

\(x^2y-xy^2=y^2-x^2\)

<=>\(xy(x-y)+(x-y)(x+y)=0\)

<=>\((x-y)(x+y+xy)=0\)

=>x=y hoặc x+y+xy=0=>y(x+1)=-x=>y=\(\frac{-x}{x+1} \)

Với x=y

=>\(x^3-x^2+2=0\)

=>x=-1

=>y=-1

Với y=\(\frac{-x}{x+1} \)

=>\(\frac{-x^3}{x+1} +2-\frac{x^2}{(x+1)^2}=0 \)

tự giải nốt nha