Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hệ phương trình (*) trở thành :
+ u = 9 7 ⇒ 1 x = 9 7 ⇒ x = 7 9 + v = 2 7 ⇒ 1 y − 2 7 ⇒ y − 7 2
Vậy hệ phương trình có nghiệm (7/9;7/2)
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}+\dfrac{1}{y}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\) (Đk: x,y ≠ 0)
Đặt: \(\dfrac{1}{x}=u;\dfrac{1}{y}=v\)
Hệ trở thành:
\(\left\{{}\begin{matrix}u=\dfrac{3}{2}+v\\u+v=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{3}{2}+v\\\dfrac{3}{2}+v+v=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{3}{2}+v\\2v=-\dfrac{35}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{37}{48}\\v=-\dfrac{35}{48}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{37}{48}\\\dfrac{1}{y}=\dfrac{-35}{48}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{48}{37}\\y=-\dfrac{48}{35}\end{matrix}\right.\)
Vậy: \(\left(x;y\right)=\left(\dfrac{48}{37};-\dfrac{48}{35}\right)\)
Đặt $x^2 = a > 0$ và $y^2 = b > 0$ thì hệ đã cho trở thành:
$\left\{\begin{aligned}&4a - 3b = 5\\&a + 2b = 4\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&4a - 3b = 5\\&a = 4 - 2b\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&16 - 8b - 3b = 5\\&a = 4 - 2b\\ \end{aligned}\right.$
$ \Leftrightarrow \left\{\begin{aligned}&- 11b = -11\\&a = 4 - 2b\\ \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&b = 1 \, (tm)\\&a = 2 \, (tm)\\ \end{aligned}\right.$
Suy ra $x^2 = 2$ và $y^2 = 1$ từ đó em suy ra các nghiệm $(x;y)$ nhé
Đặt 1/x = u; 1/y = v,hệ (II)trở thành:
Vậy số ngày để đội A làm 1 mình xong đoạn đường đó là 40 ngày
Số ngày để đội B làm 1 mình xong đoạn đường đó là 60 ngày
Đặt \(\sqrt{x^2+9}=a\) ( \(a\ge9\) ) => \(x^2+9=a^2\)
Đặt \(3x+5=b\) => \(2x+3=\dfrac{2}{3}a-\dfrac{1}{3}\)
Ta có; \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
<=> \(2ab=3a^2+\left(\dfrac{2}{3}b-\dfrac{1}{3}\right)\)
<=> \(6ab=9a^2+2b-1\)
<=> \(\left(9a^2-1\right)-\left(6ab-2b\right)=0\)
<=> \(\left(3a-1\right)\left(3a+1\right)-2b\left(3a-1\right)=0\)
<=> \(\left(3a-1\right)\left(3a+1-2b\right)=0\)
<=> \(\left[{}\begin{matrix}3a=1\left(1\right)\\3a-2b=-1\left(2\right)\end{matrix}\right.\)
(1) => \(3\sqrt{x^2+9}=1\) => Vô nghiệm ( vì \(\sqrt{x^2+9}\ge9\) )
(2) => \(3\sqrt{x^2+9}-2\left(3x+5\right)=-1\)
=> \(x=0\) (TM)
P/s: Mk nghĩ vì bn khá giỏi nên mk sẽ lm hơi tắt!
\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
\(\Leftrightarrow2\left(3x+5\right)\sqrt{x^2+9}-30=3x^2+2x\)
\(\Leftrightarrow\dfrac{4\left(3x+5\right)^2\left(x^2+9\right)-900}{2\left(3x+5\right)\sqrt{x^2+9}+30}=x\left(3x+2\right)\)
\(\Leftrightarrow\dfrac{36x^4+120x^3+424x^2+1080x}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)
\(\Leftrightarrow\dfrac{4x\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)
\(\Leftrightarrow x\left(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)\right)=0\)
Dễ thấy: \(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)>0\)
\(\Rightarrow x=0\)