Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
Từ pt đầu ta có: \(x^2+y=x\left(2y-1\right)\) (1)
\(x^4+2x^2y+y^2+3x^2-6x^2y=0\Leftrightarrow\left(x^2+y\right)^2-3x^2\left(2y-1\right)=0\) (2)
Thay (1) vào (2) ta được:
\(x^2\left(2y-1\right)^2-3x^2\left(2y-1\right)=0\Leftrightarrow x^2\left(2y-1\right)\left(2y-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\y=\frac{1}{2}\Rightarrow x^2+\frac{1}{2}=0\left(vn\right)\\y=2\Rightarrow x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\end{matrix}\right.\)