Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
Mình theo olm từ hồi thi violympic toán tỉnh.... bây giờ cũng đã sắp thi cấp 3. thời gian trôi nhanh quá :(
Web này là 1 phần kỉ niệm của mình. Mình muốn góp một chút cho web. Chúc bạn thi tốt nhé !
ĐK: x>=1-2y, 1>=x>=-2
PT(2)=>\(\left(2y+x\right)\left(y^2-x-y\right)=0\) 0=>2y=-x hoặc y^2-y=x
Với 2y=-x thì vi phạm điều kiện xác định do x+2y-1=-2y+2y-1=-1
Với y^2-y=x=> \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}=y^2-y+2\)
\(ĐKXĐ:\frac{\sqrt{5}+1}{2}\ge y\ge\frac{\sqrt{5}-1}{2}\)
GIẢi pt này ra y=1 => 0=x (tm)
Nếu bạn chưa hiểu PT cuối thì đây là cách mình giải nó \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}\le\frac{1}{2}\left(2y+2\right)\left(am-gm\right)\)
\(=>VT\le y+1\le y^2-y+2\Leftrightarrow\left(y-1\right)^2\ge0\)
DB xảy ra khi y=1 (TMĐK)
\(\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy\left(2y^3-x^3\right)=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\left(1\right)\\x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\)
Dễ thấy y = 0 không phải là nghiệm của hệ
Ta đặt \(x=ty\) thì ta có
\(\left(ty\right)^5+\left(ty\right)^3y^2-\left(ty\right)^2y^3+2tyy^4-\left(ty\right)^4y=2y^5\)
\(\Leftrightarrow t^5-t^4+t^3-t^2+2t-2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^4+t^2+2\right)=0\)
Vì \(t^4+t^2+2>0\)
\(\Rightarrow t=1\)
\(\Rightarrow x=y\)
Thế vô (1) ta được
\(2x^3-x^3=1\)
\(\Leftrightarrow x=y=1\)
Hệ tương đương
\(\hept{\begin{cases}\left(x+y\right)^2-2xy-2\left(x+y\right)=6\\x+y-xy=5\end{cases}}\)
S = x + y, P = xy
=>
\(\hept{\begin{cases}S^2-2P-2S=6\\S-P=5\end{cases}}\)
Thay P = S - 5 vào PT trên
=> S2 - 2(S - 5) - 2S = 6
<=> S2 - 4S + 4 = 0
<=> S = 2
=> P = -3
=> x, y là 1 nghiệm của PT
X2 - 2X - 3 = 0
=>
x = -1, y = 3
Hoặc x = 3, y = -1
\(\Leftrightarrow\hept{\begin{cases}\left(x-y+1\right)\left(x-2\right)=0\\x^3+2y^2=6\end{cases}}\)
den day ban tu lam tiep nhe