Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)
\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)
Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)
\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)
\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)
\(\Leftrightarrow4a^2-6a+2=0\)
Làm nốt
2, ĐKXĐ \(x\ge1,y\ge0\)
\(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)
Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\)
<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\)
<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)
<=> \(\left(x+y\right)\left(2y+1-x\right)=0\)
Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=> \(x=2y+1\)
Thay x=2y+1 vào (2)
Đoạn này bn tự giải tiếp nhé
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
\(\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy\left(2y^3-x^3\right)=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\left(1\right)\\x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\)
Dễ thấy y = 0 không phải là nghiệm của hệ
Ta đặt \(x=ty\) thì ta có
\(\left(ty\right)^5+\left(ty\right)^3y^2-\left(ty\right)^2y^3+2tyy^4-\left(ty\right)^4y=2y^5\)
\(\Leftrightarrow t^5-t^4+t^3-t^2+2t-2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^4+t^2+2\right)=0\)
Vì \(t^4+t^2+2>0\)
\(\Rightarrow t=1\)
\(\Rightarrow x=y\)
Thế vô (1) ta được
\(2x^3-x^3=1\)
\(\Leftrightarrow x=y=1\)
khó quá,,,,,///