K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)

Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm

23 tháng 10 2021

b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)

Hệ này cũng vô nghiệm

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

31 tháng 12 2017

2)trừ từng vế của 2 pt, ta có 

\(x^2y+y^2x-4x-4y-x^2+3xy+4y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+4\right)\left(y-1\right)=0\) (cái này bạn tự phân tích nhá )

đến đây thì dễ rồi 

^_^

23 tháng 8 2019

\(\hept{\begin{cases}2x-y=4\\x+y=4\end{cases}\Rightarrow}\hept{\begin{cases}3x=8\\x+y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{8}{3}\\y=\frac{4}{3}\end{cases}}\)

\(\hept{\begin{cases}x-y=1\\x+y=3\end{cases}\Rightarrow}\hept{\begin{cases}2x=4\\x+y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=1\end{cases}}\)