Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\sqrt{\frac{-12}{x-5}}\) xác định khi \(\frac{-12}{x-5}\) \(\ge\) 0
→x-5<0→x<5
3. xác định khi x-2>0 →x>2
5.xác định khi \(\frac{4x-5}{x+2}\ge0\)và x\(\ne\)-2
→\(\left[\begin{array}{nghiempt}\hept{\begin{cases}4x-5< 0\\x-3< 0\end{array}\right.\\\hept{\begin{cases}4x-5\ge0\\x-3>0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{5}{4}\\x< 3\end{array}\right.\\\hept{\begin{cases}x\ge\frac{5}{4}\\x>3\end{array}\right.\end{array}\right.}\)
b,\(\sqrt{\left(3x-2\right)^2}=4\)
\(\Leftrightarrow3x-2=4\)
\(\Leftrightarrow3x=6\Leftrightarrow x=2\)
vậy......
c,\(\dfrac{2\sqrt{x}-19}{4-\sqrt{x}}=\dfrac{1}{5}\) ĐKXĐ: x <16
\(\Rightarrow2\sqrt{x}-19=\dfrac{1}{5}\left(4-\sqrt{x}\right)\)
\(\Leftrightarrow2\sqrt{x}-19=\dfrac{4}{5}-\dfrac{1}{5}\sqrt{x}\)
\(\Leftrightarrow\dfrac{11}{5}\sqrt{x}=\dfrac{99}{5}\)
\(\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\left(KTMĐK\right)\)
vậy........
a/ ĐKXĐ: \(x\ge2\)
\(2\sqrt{4x-8}-\sqrt{9x-18}+\sqrt{36x-72}=14\)
\(\Leftrightarrow4\sqrt{x-2}-3\sqrt{x-2}+6\sqrt{x-2}=14\)
\(\Leftrightarrow7\sqrt{x-2}=14\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\) ( tmđk)
Vậy phương trình đã cho có nghiệm x=6
a) điều kiện : \(a>0;a\ne1\)
b) \(A=\dfrac{\sqrt{a}+1}{\sqrt{a}}\left(\dfrac{\sqrt{a}-2}{a-1}-\dfrac{2+\sqrt{a}}{a+2\sqrt{a}+1}\right)\)
\(A=\dfrac{\sqrt{a}+1}{\sqrt{a}}\left(\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\right)\)
\(A=\dfrac{\sqrt{a}-2}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{2+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}\)
\(A=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)-\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(A=\dfrac{a+\sqrt{a}-2\sqrt{a}-2-\left(2\sqrt{a}-2+a-\sqrt{a}\right)}{\sqrt{a}\left(a-1\right)}\)
\(A=\dfrac{a+\sqrt{a}-2\sqrt{a}-2-2\sqrt{a}+2-a+\sqrt{a}}{\sqrt{a}\left(a-1\right)}\)
\(A=\dfrac{2\sqrt{a}}{\sqrt{a}\left(a-1\right)}=\dfrac{2}{a-1}\)
c) \(A>0\Leftrightarrow\dfrac{2}{a-1}>0\Leftrightarrow a-1>0\Leftrightarrow a>1\)
vậy \(a>1\) thì \(A>0\)
d) thay \(a=\dfrac{13}{5-2\sqrt{3}}\) vào A ta có \(A=2:\dfrac{13}{5-2\sqrt{3}}=2.\dfrac{5-2\sqrt{3}}{13}=\dfrac{10-4\sqrt{3}}{13}\)
Bài 7:
a: \(P=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}>0\)
b: Thay \(x=\dfrac{2}{2+\sqrt{3}}=4-2\sqrt{3}\) vào P, ta được:
\(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\sqrt{3}+3}{2}\)