K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AB<BC là đề sai rồi bạn

a: \(AB=\sqrt{CA^2+CB^2}=25\left(cm\right)\)

Xét ΔABC vuông tại C có sin A=BC/BA=4/5

nên góc A\(\simeq\)53 độ

=>góc B=90-53=37 độ

ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*25=15*20=300

=>CH=12(cm)

b: ΔHCA vuông tại H có HE là đường cao

nên CE*CA=CH^2

ΔCHB vuông tại H có FH là đường cao

nên CF*CB=CH^2

=>CE*CA=CF*CB

22 tháng 10 2021

Áp dụng HTL: \(AH^2=BH\cdot HC=144\Rightarrow AH=12\left(cm\right)\)

\(BC=BH+HC=25\left(cm\right)\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot12\cdot25=150\left(cm^2\right)\)

Ta có \(\tan\widehat{HAB}=\dfrac{HB}{HA}=\dfrac{9}{12}=\dfrac{3}{4}\approx\tan37^0\)

Vậy \(\widehat{HAB}\approx37^0\)