K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Áp dụng HTL: \(AH^2=BH\cdot HC=144\Rightarrow AH=12\left(cm\right)\)

\(BC=BH+HC=25\left(cm\right)\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot12\cdot25=150\left(cm^2\right)\)

Ta có \(\tan\widehat{HAB}=\dfrac{HB}{HA}=\dfrac{9}{12}=\dfrac{3}{4}\approx\tan37^0\)

Vậy \(\widehat{HAB}\approx37^0\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.Bài 3:...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)

nên \(\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

$BC=BH+CH=25+64=89$ (cm)

Áp dụng công thức hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH=25.64\Rightarrow AH=40$ (cm)

Diện tích tam giác $ABC$ là: $AH.BC:2=40.89:2=1780$ (cm2)

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạBài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. a) CM: ABC vuông tại A. b) Tính các góc B,C và đường cao AH của tam giác. c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng...
Đọc tiếp

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạ

Bài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. 
a) CM: ABC vuông tại A. 
b) Tính các góc B,C và đường cao AH của tam giác. 
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. 
Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? 
d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng diện tích tam giác NBC. 

Bài 1 giải giúp em câu d ạ. 

Bài 2: Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm 
a) Giải tam giác ABC. 
b) Kẻ AK _I_ BC tại K, KD _I_ AB tại D, KE_I_AC tại E. 
Cmr: ADKE là hình chữ nhật. Tính độ dài DE. 
c) Cm: AD.AB=AE.AC và tam giác AED ~ ABC 
d) Gọi M là trđiểm của BC. Cmr: DE_I_AM. 
e) Gọi F là giao điểm của DK và AM. Tính S tứ giác ADFE. 

Bài 2 giải giúp em câu e ạ. 

Em xin cảm ơn.

0