Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^4 - 3x^3 + 3x - 1 = 0
<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0
<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0
<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
a) \(x^2-8\text{ }x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
b) \(\left(3x-2\right)^2-49=0\)
\(\Leftrightarrow\left(3x-2\right)^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=\sqrt{49}\\3x-2=-\sqrt{49}\end{cases}}\Rightarrow\orbr{\begin{cases}3x=9\\3x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{5}{3}\end{cases}}\)
c) \(\left(10x-5\right)^2-9x^2=0\)
\(\Leftrightarrow\left(7x-5\right)\left(13x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x-5=0\\13x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{7}\\x=\frac{5}{13}\end{cases}}\)
d) \(\left(7x+1\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x+1\right)\left(12x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\12x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{1}{12}\end{cases}}\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
x3-5x2+x-5=0
=> x2.(x-5)+(x-5)=0
=> (x-5).(x2+1)=0
=> x-5=0 hoặc x2+1=0
=> x=5 hoặc x2=-1 (vô lí)
Vậy x=5.
x4-2x3+10x2-20x=0
=> x3.(x-2)+10x(x-2)=0
=> (x-2).(x3+10x)=0
=> x.(x-2).(x2+10)=0
=> x=0 hoặc x-2=0 hoặc x2+10=0
=> x=0 hoặc x=2 hoặc x2=-10 (vô lí)
Vậy x=0 hoặc x=2.
Phân tích đa thức thành nhân tử ta được
\(x^4-x^3-7x^2+x+6=\left(x-1\right)\left(x^3-7x-6\right)=\left(x-1\right)\left(x+1\right)\left(x^2-x-6\right)=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
Giải pt tích ta tìm được x
\(x^4-x^3-7x^2+x+6=0\)
\(x^3\left(x+1\right)-2x^2\left(x+1\right)-5x\left(x+1\right)+6\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^3-2x^2-5x+6\right)=0\)
\(\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
Từ đó suy ra x=-1;1;-2;3
ok thế tự giải nhé