K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

\(12x^2y^3-10x^2y^3:5x^2y^2+4xy\left(1-3xy\right)^2\)

\(=12x^2y^3-2y+4xy\left(1-6xy+9x^2y^2\right)\)

\(=12x^2y^3-2y+4xy-24x^2y^2+36x^3y^3\)

21 tháng 3 2019

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

21 tháng 3 2019

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

13 tháng 3 2016

\(1.\)  Hổ báo !?

\(M=x^2+5y^2-2xy+6x-18y+50\)

       \(=x^2-2xy+y^2+6x-6y+9+4y^2-12y+9+32\)

       \(=\left(x-y\right)^2+6\left(x-y\right)+9+\left(2x-3\right)^2+32\)

\(M=\left(x-y+3\right)^2+\left(2x-3\right)^2+32\)

Mà  \(\left(x-y+3\right)^2\ge0\)  và  \(\left(2x-3\right)^2\ge0\)  với mọi  \(x,y\) nên  \(M\ge32>0\)  

Vậy,  biểu thức  \(M\)  luôn dương với mọi  giá trị của  \(x,y\)

Bài 2 không hổ báo lắm nên tự xử nha

13 tháng 3 2016

2/   (x2 - 4).3 - (7x - 10).3 = (x2 - 7x + 6).3

 => (x2 - 4).3 - (7x - 10).3 - (x2 - 7x + 6).3 = 0

 => 3.(x2 - 4 - 7x + 10 - x2 + 7x - 6) = 0

 => 0x = 0

=> có vô số x thỏa phương trình trên

1/ đề bị sao ấy, giải không ra

24 tháng 12 2016

5a^2+2b^2=11ab

<=>5a^2+2b^2-11ab=0

<=>5a^2-10ab-ab+2b^2=0

<=>5a(a-2b)-b(a-2b)=0

<=>(5a-b)(a-2b)=0

<=>5a-b=0 hoặc a-2b=0 <=> 5a=b hoặc a=2b

Nhưng 0 < b/5 < a => b < 5a nên 5a=b là vô lí

Thay a=2b vào ,ta có M = 4.(2b)^2-5b^2/(2b)^2+3.2b.b=11b^2/10b^2=11/10

25 tháng 12 2016

cảm ơn bạn nha^-^

31 tháng 7 2018

b) (1 + 2x)(1- 2x) - x(x+2)(x-2)

= (1- 4x2) - x(x2 - 4)

= 1 - 4x2- x3- 4x

= (1 - x3) + (4x - 4x2)

= (1- x) (1 + x + x2) + 4x(1 -x)

= (1-x)(1+5x + x2)