Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: ...
\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)
b.
\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow4cos^32x-2cos2x-1=0\)
Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề
c. ĐKXĐ: ...
\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)
a/ \(\Leftrightarrow\cos\left(\frac{\pi}{7}-3x\right)=\cos\left(-\frac{5}{6}\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{\pi}{7}-3x=-\frac{5}{6}\pi+k2\pi\\\frac{\pi}{7}-3x=\frac{5}{6}\pi+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{41}{126}\pi-\frac{2}{3}k\pi\\x=-\frac{29}{42}\pi-\frac{2}{3}k\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow\sin\left(90^0-\frac{x}{3}\right)=\sin\left(2x+30^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}90^0-\frac{x}{3}=2x+30^0+k180^0\\90^0-\frac{x}{3}=180^0-2x-30^0+k180^0\end{matrix}\right.\Leftrightarrow...\)
c/ \(DKXD:\cos\left(30^0-2x\right)\ne0\Leftrightarrow30^0-2x\ne90^0+k180^0\Leftrightarrow x\ne-30^0-k90^0\)
\(\Leftrightarrow30^0-2x=60^0+k180^0\Leftrightarrow x=-15^0-k90^0\left(tm\right)\)
d/ \(DKXD:\sin\left(30^0-2x\right)\ne0\Leftrightarrow30^0-2x\ne k180^0\Leftrightarrow x\ne15^0-k90^0\)
\(\Leftrightarrow30^0-2x=30^0+k.180^0\Leftrightarrow x=-k.90^0\left(tm\right)\)
a.
\(1-sin^2x+1-2sin^2x+sinx+2=0\)
\(\Leftrightarrow-3sin^2x+sinx+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b. ĐKXĐ; ...
\(5tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow5tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
e.
Ko rõ vế phải
f.
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
1.
\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)
2.
\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)
4.
\(cos3x+cosx+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
5.
\(sin6x+sin2x+sin4x=0\)
\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)
\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
6. ĐKXĐ; ...
\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)
\(\Leftrightarrow tan3x=1\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)