K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

a/ \(\Leftrightarrow\cos\left(\frac{\pi}{7}-3x\right)=\cos\left(-\frac{5}{6}\pi\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{\pi}{7}-3x=-\frac{5}{6}\pi+k2\pi\\\frac{\pi}{7}-3x=\frac{5}{6}\pi+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{41}{126}\pi-\frac{2}{3}k\pi\\x=-\frac{29}{42}\pi-\frac{2}{3}k\pi\end{matrix}\right.\)

b/ \(\Leftrightarrow\sin\left(90^0-\frac{x}{3}\right)=\sin\left(2x+30^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}90^0-\frac{x}{3}=2x+30^0+k180^0\\90^0-\frac{x}{3}=180^0-2x-30^0+k180^0\end{matrix}\right.\Leftrightarrow...\)

c/ \(DKXD:\cos\left(30^0-2x\right)\ne0\Leftrightarrow30^0-2x\ne90^0+k180^0\Leftrightarrow x\ne-30^0-k90^0\)

\(\Leftrightarrow30^0-2x=60^0+k180^0\Leftrightarrow x=-15^0-k90^0\left(tm\right)\)

d/ \(DKXD:\sin\left(30^0-2x\right)\ne0\Leftrightarrow30^0-2x\ne k180^0\Leftrightarrow x\ne15^0-k90^0\)

\(\Leftrightarrow30^0-2x=30^0+k.180^0\Leftrightarrow x=-k.90^0\left(tm\right)\)

NV
4 tháng 10 2020

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

a)

\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)

c)

\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)

\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)

d)

\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

f)

\(\cos 2x-\cos 4x=0\)

\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)

b,e,g bạn xem lại đề, đơn vị không thống nhất.

NV
12 tháng 10 2020

a.

\(1-sin^2x+1-2sin^2x+sinx+2=0\)

\(\Leftrightarrow-3sin^2x+sinx+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b. ĐKXĐ; ...

\(5tanx-\frac{2}{tanx}-3=0\)

\(\Leftrightarrow5tan^2x-3tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)

NV
12 tháng 10 2020

e.

Ko rõ vế phải

f.

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow1-2sin^22x=0\)

\(\Leftrightarrow cos4x=0\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)

NV
28 tháng 11 2019

a/ Thiếu đề, sau dấu "-" hình như còn gì đó

b/ \(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

c/ \(\Rightarrow sin2x=-sinx\Leftrightarrow sin2x=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=-x+k2\pi\\2x=\pi+x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

d/ \(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1\)

\(\Leftrightarrow sinx.cosx=0\Leftrightarrow sin2x=0\)

\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)

e/ f/ Thiếu đề

g/ \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=-cos2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=cos\left(\pi-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=2x+k2\pi\\3x=-2x+k2\pi\\3x=\pi-2x+k2\pi\\3x=2x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=-\pi+k2\pi\end{matrix}\right.\)

NV
13 tháng 7 2020

10. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(2cos2x+tanx=\frac{4}{5}\)

\(\Leftrightarrow4cos^2x-2+tanx=\frac{4}{5}\)

\(\Leftrightarrow\frac{4}{1+tan^2x}+tanx-\frac{14}{5}=0\)

Đặt \(tanx=t\)

\(\Rightarrow\frac{20}{1+t^2}+5t-14=0\)

\(\Leftrightarrow5t^3-14t^2+5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(5t^2-4t-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{2+\sqrt{19}}{5}\\t=\frac{2-\sqrt{19}}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2=tana\\tanx=\frac{2+\sqrt{19}}{5}=tanb\\tanx=\frac{2-\sqrt{19}}{5}=tanc\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=a+k\pi\\x=b+k\pi\\x=c+k\pi\end{matrix}\right.\)

NV
13 tháng 7 2020

9.

\(\Leftrightarrow cos2x-3cosx=2\left(cosx+1\right)\)

\(\Leftrightarrow2cos^2x-1-3cosx=2cosx+2\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=3\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

NV
24 tháng 10 2019

1/ \(sinx=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

b/ \(cos=-\frac{\sqrt{2}}{2}=cos\left(\frac{3\pi}{4}\right)\)

\(\Rightarrow x=\pm\frac{3\pi}{4}+k2\pi\)

c/ \(tanx=\sqrt{3}=tan\left(\frac{\pi}{3}\right)\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

d/ \(cotx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)

NV
24 tháng 10 2019

2/

a/ \(sin^2x+sinx-2=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-2\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

b/ \(cot^2x-2cotx-3=0\)

\(\Leftrightarrow\left(cotx+1\right)\left(cotx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot3+k\pi\end{matrix}\right.\)

3/ \(\Leftrightarrow1-cos2x+1-cos4x+1-cos6x=3\)

\(\Leftrightarrow cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2coss4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)