Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2-2x< 3+9\)
\(\Leftrightarrow-2x< 12\)
\(\Leftrightarrow x>-6\)
Vậy tập nghiệm của BPT (1) là \(S=\left\{x\in R|x>-6\right\}\)
Bài này nếu làm ra hết thì hơi dài nên chỉ hướng dẫn b thôi nhé.
Bạn chia thành các khoản x<-2;1>x>=-2; x>=1. Rồi bỏ dấu giá trị tuyệt đối giải từ từ
<=> (10x+8)/12-(2x-1)/12>48/12
<=>10x+8-2x+1>48
<=> 10x-2x>48-8-1
<=>8x>39
<=> x>39/8
Vậy tập n là {x/x>39/8}
x+1<x+2<x+3<x+4 ( với mọi x)
\(\dfrac{1}{100}\) < \(\dfrac{1}{99}\)<\(\dfrac{1}{3}\) <\(\dfrac{1}{2}\)
=>\(\dfrac{x+1}{100}\)+\(\dfrac{x+2}{99}\) <\(\dfrac{x+3}{3}\)+\(\dfrac{x+4}{2}\) là đúng
giải phương trình bất nhất (3x-1)(x+3)= (2-x)(5-3x) các bạn ghi các bước giải ra giúp mik luôn nha !
(3x-1)(x+3)= (2-x)(5-3x)
\(\Leftrightarrow3x^2+9x-x-3=10-6x-5x+3x^2\)
\(\Leftrightarrow3x^2+8x-3-10+11x-3x^2=0\)
\(\Leftrightarrow19x-13=0\)
\(\Leftrightarrow x=\frac{13}{19}\)
Vậy \(x\in\left\{\frac{13}{19}\right\}\)
Ta thấy : \(x^2+1\ge1\) nên để \(\left(3x-1\right)\left(x^2+1\right)< 0\)\(thì\) \(3x-1< 0\)\(hay\) \(x< \frac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=x+1\\x\left(x+1\right)=-\left(x+1\right)\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}\left(x+1\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)