Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy: \(x^2+2x+2>0;x^2-2x+3>0\)
\(\Rightarrow bpt\Leftrightarrow\left(\sqrt{x^2+2x+2}\right)^2>\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow x^2+2x+2>x^2-2x+3\)
\(\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\)
Vậy nghiệm của bpt là \(T=\left(\frac{1}{4};+\infty\right)\)
Điều kiện:
\(3-2x\ge0\)
\(\Leftrightarrow x\le\frac{3}{2}\)
Ta có: \(3-2x>3\)
\(\Leftrightarrow x< 0\)
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)
Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)
\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))
\(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)
Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)
Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)
Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)
=>2x-3căn x+2căn x-3>0
=>(2căn x-3)(căn x+1)>0
=>2căn x-3>0
=>x>9/4