K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Ta có \(\left(x^2+x\right)-\left(x^2-x\right)=2x\Rightarrow x^2+x=\left(x^2-x\right)+2x\)

Do đó bất phương trình

\(\Leftrightarrow2^{x^2-x}.2^{2x}+4.2^{x^2-x}-2^{2x}-4\ge0\)

\(\Leftrightarrow2^{x^2-x}\left(2^{2x}+4\right)-\left(2^{2x}+4\right)\ge0\)

\(\Leftrightarrow\left(2^{2x}+4\right)\left(2^{x^2-x}-1\right)\ge0\)

\(\Leftrightarrow2^{x^2-x}\ge1\)

\(\Leftrightarrow x^2-x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge1\\x\le0\end{array}\right.\)

Vậy bất phương trình có tập nghiệm là S = (\(-\infty;0\)\(\cup\) [\(1;+\infty\))

9 tháng 5 2016

\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\)\(\Leftrightarrow\left(x^2-2x\right)^2-2\left(x^2-2x+1\right)-1\ge0\)

Đặt \(t=x^2-2x\), ta được \(t^2-2t-3\ge0\)

Bất phương trình này có nghiệm \(\left[\begin{array}{nghiempt}t\le-1\\t\ge3\end{array}\right.\)

Do đó \(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x^2-2x\le-1\\x^2-2x-3\ge0\end{array}\right.\)

                                                          \(\Leftrightarrow x=1\) hoặc \(x\le-1\) hoặc \(x\ge3\)

Vậy bất phương trình đã cho có tập nghiệm là 

S =(\(-\infty;-1\)\(\cup\left\{1\right\}\cup\) [3;\(+\infty\))

27 tháng 2 2016

\(\Leftrightarrow\) \(\begin{cases}x\le1;2\le x\\-3\le x\le4\\x\le-2;2\le x\end{cases}\)  \(\Leftrightarrow\)  \(\begin{cases}-3\le x\le-2\\2\le x\le4\end{cases}\)

Vậy hệ đã cho có tập nghiệm T = \(\left[-3;-2\right]\cup\left[2;4\right]\)

7 tháng 5 2016

Ta thấy hàm số \(f\left(x\right)=2^{1-x}-2x+1=-2x+1+\frac{2}{2^x}\) là hàm nghịch biến và \(f\left(1\right)=0;f\left(x\right)>f\left(1\right)=0\Leftrightarrow x< 1\Leftrightarrow1-x>0\)\(g\left(0\right)=0\)nên \(f\left(x\right)\) cùng dấu với \(1-x\)

Ta cũng thấy rằng hàm số \(g\left(x\right)=2^x-1\) là hàm đồng biến và \(g\left(0\right)=0\) nên \(g\left(0\right)>0\Leftrightarrow x>0\) nên \(g\left(x\right)\) cùng dấu với \(x\)

Suy ra bất phương trình đã cho tương đương với :

                  \(\frac{1-x}{x}\ge0\Leftrightarrow0< x\le1\)

Vậy tập nghiệm của bất phương trình là (0;1]

9 tháng 5 2016

\(\Leftrightarrow2^{x^2-x}.2^{2x}-4.2^{^{x^2-x}}-2^{2x}+4=0\)

\(\Leftrightarrow2^{x^2-x}\left(2^{2x}-4\right)-\left(2^{2x}-4\right)=0\)

\(\Leftrightarrow\left(2^{2x}-4\right)\left(2^{x^2-x}-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2^{2x}=4\\2^{x^2-x}=1\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=0\end{array}\right.\)

26 tháng 2 2016

\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\)  (*)

 

\(x^5-3x^4+2x^2-2x+2\ge0\) (1)

\(x^4-2x^3-x+2=0\) (2)

\(x^2-3x+2=0\)  (3)

\(\left(x^2-1\right)\left(x-2\right)=0\)  (4)

Từ 

\(x^2-3x+2=0\)  (3) \(\Leftrightarrow\) x=1 hoặc x=2

x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ

x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ

Vậy hệ phương trình (*) có nghiệm duy nhất là x=1

 

 

9 tháng 5 2016

\(\frac{21}{x^2-4x+10}-x^2+4x-6\ge0\Leftrightarrow\frac{21}{x^2-4x+10}-\left(x^2-4x+10\right)+4\ge0\)

Đặt \(t=x^2-4x+10=\left(x-2\right)^2+6\), ta có điều kiện \(t\ge6\), khi đó \(t>0\)

Phương trình ban đầu tương đương : \(\frac{21}{t}-t+4\ge0\Leftrightarrow t^2-4t-21\le0\)

                                                                               \(\Leftrightarrow-3\le t\le7\)

Kết hợp với điều kiện \(t\ge6\), ta được \(6\le t\le7\)

Do đó :

\(\frac{21}{x^2-4x+10}-x^2+4x-6\ge0\Leftrightarrow\begin{cases}\left(x-2\right)^2+6\ge6\\\left(x-2\right)^2+6\le7\end{cases}\)

                                           \(\Leftrightarrow\left|x-2\right|\le1\)

                                          \(\Leftrightarrow1\le x\le3\)

Vậy tập nghiệm của bất phương trình đã cho là \(T=\left[1;3\right]\)

 

10 tháng 5 2016

mk tên phạm thảo vân đó

 

NV
29 tháng 5 2020

\(\frac{-x^2\left(x-2\right)+x-2}{x\left(4x-9\right)}\ge0\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(1+x\right)\left(x-2\right)}{x\left(4x-9\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-1\\0< x\le1\\\frac{9}{4}< x\le2\end{matrix}\right.\)

\(\left(x^2-4x\right)\sqrt{x^2+2x-3}\ge0\)

ĐK : \(\left[{}\begin{matrix}x\le-3\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow x^2-4x\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le0\end{matrix}\right.\)

Kết hợp với điều kiện \(\Rightarrow\left[{}\begin{matrix}x\le-3\\x\ge4\\x=1\end{matrix}\right.\)