Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}mx-y=4\\x+my=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx=y+4\\my=-2-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}mxy=y^2+4y\left(y\ne0\right)\\mxy=-2x-x^2\left(x\ne0\right)\end{matrix}\right.\).
Suy ra \(y^2+4y=-2x-x^2\Leftrightarrow x^2+y^2+4y+2x=0\).
a) xy+xz-2y-2z=x(y+z)-2(y+z)=(y+z)(x-2)
b) \(x^2-6xy+9y^2-25z^2=\left(x-3y\right)^2-\left(5z\right)^2=\left(x-3y-5z\right)\left(x-3y+5z\right)\)
c) \(x^2-2x+2y-xy=x\left(x-2\right)+y\left(2-x\right)=x\left(x-2\right)-y\left(x-2\right)=\left(x-2\right)\left(x-y\right)\)
d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)
e)\(x^2-y^2+2yz-z^2=x^2-\left(y^2-2yz+z^2\right)=x^2-\left(y-z\right)^2=\left(x+y-z\right)\left(x-y+z\right)\)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
Ta có :\(|A|\ge B\left(B\ge0\right)\Leftrightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\)
\(|A|\le B\left(B\le0\right)\Leftrightarrow-B\le A\le B\)
Áp dụng vào bài ta có :
a. \(4x^2\le1\Leftrightarrow|2x|\le1\Leftrightarrow-1\le2x\le1\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
Vậy nghiệm của bất phương trình đã cho là \(-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
b.\(x^2+2x+1>0\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow x\ne-1\)(do \(\left(x+1\right)^2\ge0\) với mọi x)
Vậy nghiệm của bất phương trình đã cho là \(x\ne-1\)
c.\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow|x|\ge2\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
Vậy nghiệm của bất phương trình đã cho là \(x\ge2\) hoặc \(x\le-2\)
d.\(-x^2+4x+5>0\Leftrightarrow-\left(x^2-4x+4\right)+9>0\Leftrightarrow\left(x-2\right)^2< 9\Leftrightarrow-3< x-2< 3\Leftrightarrow-1< x< 5\)Vậy nghiệm của bất phương trình đã cho là \(-1< x< 5\)
e. \(x^2-2x+1< 9\Leftrightarrow\left(x-1\right)^2< 9\Leftrightarrow|x-1|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)Vậy nghiệm của bất phương trình đã cho là \(-2< x< 4\)
f. \(2x^2>0\Leftrightarrow x^2>0\Leftrightarrow x\ne0\)( vì \(x^2\ge0\) với mọi x)
Vậy nghiệm của bất phương trình đã cho là \(x\ne0\)
Text
\(x^{2013}+x^{2013}+1+1+...+1\ge2011\sqrt[2013]{x^{2013}.x^{2013}}=2011.x^2\) (2011 số 1)
Tương tự: \(2y^{2013}+2011\ge2013y^2\) ; \(2z^{2013}+2011\ge2013z^2\)
Cộng vế với vế:
\(2\left(x^{2013}+y^{2013}+z^{2013}\right)+6033\ge2013\left(x^2+y^2+z^2\right)\)
\(\Rightarrow x^2+y^2+z^2\le3\)
\(M_{max}=3\) khi \(x=y=z=1\)
\(|2x^2-3x+4|-|2x-x^2-1|=0\)
\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)
Vậy ...
\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)
\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(TH1:3x^2-5x+5=0\)
Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)
\(TH2:x^2-x+3=0\)
Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)
Vậy pt vô nghiệm