K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) xy+xz-2y-2z=x(y+z)-2(y+z)=(y+z)(x-2)

b) \(x^2-6xy+9y^2-25z^2=\left(x-3y\right)^2-\left(5z\right)^2=\left(x-3y-5z\right)\left(x-3y+5z\right)\)

c) \(x^2-2x+2y-xy=x\left(x-2\right)+y\left(2-x\right)=x\left(x-2\right)-y\left(x-2\right)=\left(x-2\right)\left(x-y\right)\)

d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)

e)\(x^2-y^2+2yz-z^2=x^2-\left(y^2-2yz+z^2\right)=x^2-\left(y-z\right)^2=\left(x+y-z\right)\left(x-y+z\right)\)

16 tháng 2 2020

mơn bn nhìu

16 tháng 8 2016

1)Thấy: x=0;y=0 không phải là nghiệm của hệ.

\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)

Trừ vế theo vế hai phương trình,đc:

\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)

\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:

\(26x^4-426x^2-1728=0\)

\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé oaoa

 

16 tháng 8 2016

lần sau bn đăng ít 1 thôi nhé

8 tháng 12 2019

câu 1.

a. \(=\left(x+y\right)\left(x-5\right)\)

b. \(=\left(x+2y\right)^2\)

c. \(=\left(x-1\right)\left(x-6\right)\)

câu 3.

a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)

Vậy \(minA=2010\Leftrightarrow x=-1\)

b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)

Vì x, y nguyên nên có các TH :

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)

câu 6.

a. giống câu 3

b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)

a: \(A=77^2+77\cdot22+77=7700\)

b: \(B=2\cdot\left(1.007+0.006\right)+2\left(-0.006-1.007\right)\)

\(=0\)

c: \(C=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2=\left(3-1\right)\cdot\left(3-2\right)^2=2\)

d: \(D=\left(-5\right)^2\cdot2-2+\left(-5\right)\cdot2^2+5\)

\(=25\cdot2-2-5\cdot4+5\)

=50-2-20+5

=55-22=33

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$