Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://baigiang.violet.vn/present/show/entry_id/6146495
Tham khảo đi. cho cj nhé
Mai Anh tính sai rồi nha bạn dù kết quả của bạn vẫn đúng nha
27^150 = (3^3)^150 = 3^450
9^226= (3^2)^226 = 3^452
Mà 3^452 > 3^450 suy ra 9^226 > 27^150
\(a,\frac{62}{7}:x=\frac{29}{9}:\frac{3}{56}\)
\(\frac{62}{7}:x=\frac{1624}{27}\)
\(x=\frac{62}{7}:\frac{1624}{27}=\frac{837}{5684}\)
\(b,\frac{1}{5}:x=\frac{1}{5}-\frac{1}{7}\)
\(\frac{1}{5}:x=\frac{2}{35}\)
\(x=\frac{1}{5}:\frac{2}{35}=\frac{7}{2}\)
\(c,\frac{2}{3}.x-\frac{4}{7}=\frac{1}{7}\)
\(\frac{2}{3}.x=\frac{1}{7}+\frac{4}{7}=\frac{5}{7}\)
\(x=\frac{5}{7}:\frac{2}{3}=\frac{15}{14}\)
\(d,\frac{2}{7}-\frac{8}{9}.x=\frac{2}{3}\)
\(\frac{8}{9}.x=\frac{2}{7}-\frac{2}{3}=-\frac{8}{21}\)
\(x=-\frac{8}{21}:\frac{8}{9}=-\frac{3}{7}\)
\(e,\frac{4}{7}+\frac{5}{9}:x=\frac{1}{5}\)
\(\frac{5}{9}:x=\frac{1}{5}-\frac{4}{7}=-\frac{13}{35}\)
\(x=\frac{5}{9}:-\frac{13}{35}=\frac{175}{117}\)
\(i,\frac{2}{5}-\frac{2}{5}.x=\frac{2}{5}\)
\(\frac{2}{5}.\left(1-x\right)=\frac{2}{5}\)
\(1-x=\frac{2}{5}:\frac{2}{5}=1\)
\(x=1-1=0\)
\(g,\frac{2}{3}+\frac{1}{3}:x=-1\)
\(\frac{1}{3}:x=-1-\frac{2}{3}=-\frac{5}{3}\)
\(x=\frac{1}{3}:-\frac{5}{3}=-\frac{1}{5}\)
học tốt nha
a x b = 2/3 = 6/9
a x (b+5) = 28/9
=> 5a = 22/9
=> a = 22/45
b = 15/11
12x+3.23=23.x-4.32
12x+3.8=8.x-4.9
12x+24=8x-36
12x-8x=36-24
4x=12
x=12:4=3
1.A= 1.2.3+2.3.4+...+29.30.31+x=15
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)
Từ đó suy ra nha bạn
2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)
\(2A=2+2^2+2^3+2^4+2^5+...+2^{2022}\)
\(A=2A-A=2^{2022}-1\)