K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
5 tháng 5 2017

\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)

Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)

Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.

Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như  \(x\le-1\)

Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)

Khi đó minP = 2 khi x = -1, y = -1.

Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.

Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)

Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)

Vậy \(minP=3\)  khi \(x=1\Rightarrow y=2\)

Tóm lại \(minP=2\) khi x = -1, y = -1.

12 tháng 8 2020

\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)

\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)

\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)

\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)

\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)

mà để Giá trị nguyên lớn nhất của x

\(\Rightarrow x=-1\)

5 tháng 2 2016

1. 3x2 - 50x = 0 <=> x(3x - 50) = 0

=> x = 0 hoặc 3x - 50 = 0 hay x = 50/3

2. 23x + 2 = 4x + 5 <=> 23x + 2 = 22x + 10

=> 3x + 2 = 2x + 10 => x = 8

3. C = (x2 + 13)2 =( x4 + 26x2) + 169

Ta thấy: ( x4 + 26x2)\(\ge\)0 nên ( x4 + 26x2) + 169 \(\ge\) 0 + 169

dấu bằng xảy ra khi ( x4 + 26x2) = 0 => GTNN của C = 169

4. \(\frac{3}{x+1}\)có giá trị nguyên khi và chỉ khi 3 chia hết cho x + 1

hay x + 1 \(\in\)Ư(3)={ -1;2;-3;3}

\(\in\){-2;1;-4;2}

Vậy số nguyên x nhỏ nhất là - 4 để \(\frac{3}{x+1}\) có giá trị nguyên

19 tháng 1 2019

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x;y\\\left(y-\sqrt{2}\right)^2\ge0\forall x;y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\forall x;y\)

\(\Rightarrow N\ge2008\forall x;y\)

\(N=2008\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

19 tháng 1 2019

 \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\sqrt{2}\right)^2\ge0\end{cases}}\text{Dấu }=\text{xảy ra khi}\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

\(\Rightarrow MinN=2008\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}\)

\(M=3.1+\frac{1-\sqrt{2}^2}{1+1}=3+\frac{1-2}{2}=\frac{5}{2}\)

22 tháng 3 2018

Ta có : 

\(\left(x+1\right)^2\ge0\)\(\left(\forall x\inℤ\right)\)

\(\left(y-\sqrt{2}\right)^2\ge0\)\(\left(\forall y\inℤ\right)\)

\(\Rightarrow\)\(\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

Thay \(x=-1\) và \(y=\sqrt{2}\) vào \(M=3x+\frac{x^2-y^2}{x^2+1}\) ta được : \(M=3.\left(-1\right)+\frac{\left(-1\right)^2-\left(\sqrt{2}\right)^2}{\left(-1\right)^2+1}\)

\(M=-3+\frac{1-2}{1+1}\)

\(M=-3+\frac{-1}{2}\)

\(M=\frac{-7}{2}\)

Vậy : +) Giá trị của \(M=3x+\frac{x^2-y^2}{x^2+1}\) tại \(x=-1\) và \(y=\sqrt{2}\) là \(\frac{-7}{2}\)

         +) Giá trị nhỏ nhất của \(P=2008\) khi \(x=-1\) và \(y=\sqrt{2}\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

x=0 vs y= 1

ok nha

không  bt đúng hay sai