Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Câu 1:
Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)
Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)
\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)
Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)
\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)
Do đó không tồn tại m thỏa mãn.
Câu 2:
Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:
TH1: PT \(x^2-3x-m=0\) có nghiệm kép
\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)
\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)
TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)
\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)
Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)
Vậy tổng giá trị của $m$ thỏa mãn là:
\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)
Lời giải + diễn giải
để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm
a) \(y'=3x^2-6x+m\)
xét f(x)= 3x^2 -6x+m
để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)
\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)
Kết luận với m< 3 hàm A(x) luôn có cực trị
b)
\(y'=3x^2+4mx+m\)
\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)
c)
\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)
\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)
\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)
wtf ý nào k làm dc thì up nên chứ up hết bài nên cho người ta làm hộ thì có học được cái j đâu
Lời giải:
\(\bullet \) Nếu \(m=0\Rightarrow y=\frac{2x-1}{(1-2x)(4x^2+1)}=\frac{-1}{4x^2+1}\)
Có \(\lim _{x\rightarrow \infty}\frac{-1}{4x^2+1}=0\) , \(4x^2+1\neq 0\) với mọi $x$ nên đồ thị hàm số có đúng một tiệm cận ngang \(y=0\)
\(\bullet\) Nếu \(m\neq 0\) :
+) \(m=\frac{-1}{2}\) thì \(y=\frac{2}{(2x+1)(-x^2-4x+2)}\)
\(\lim _{x\rightarrow \infty}y=0\) nên ĐTHS có TCN $y=0$
\(2x+1=0\Leftrightarrow x=\frac{-1}{2}\) nên \(x=-\frac{1}{2}\) là TCĐ.
ĐTHS có nhiều hơn một tiệm cận (loại)
+) \(m\neq \frac{-1}{2}\) thì \((mx^2-2x+1)(4x^2+4m+1)\) là một hàm bậc 4 không có nghiệm \(\frac{1}{2}\)
Suy ra \(\lim _{x\rightarrow \infty}y=0\), ĐTHS có TCN $y=0$
Để ĐTHS chỉ có một tiệm cận thì \((mx^2-2x+1)(4x^2+4m+1)\neq 0\forall x\)
\(\Rightarrow \left\{\begin{matrix} \Delta_{1}'=1-m<0\\ \Delta_{2}=-(4m+1)<0\end{matrix}\right.\Rightarrow m>1\)
Vậy \(m=0\) hoặc \(m>1\)
Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán