\(\dfrac{2x-1}{mx^2-1}\) là x = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2021

Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Câu 1:

Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)

Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)

\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)

Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)

\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)

Do đó không tồn tại m thỏa mãn.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Câu 2:

Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:

TH1: PT \(x^2-3x-m=0\) có nghiệm kép

\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)

\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)

TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)

\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)

Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)

Vậy tổng giá trị của $m$ thỏa mãn là:

\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

27 tháng 8 2017

wtf ý nào k làm dc thì up nên chứ up hết bài nên cho người ta làm hộ thì có học được cái j đâu

AH
Akai Haruma
Giáo viên
29 tháng 7 2017

Lời giải:

\(\bullet \) Nếu \(m=0\Rightarrow y=\frac{2x-1}{(1-2x)(4x^2+1)}=\frac{-1}{4x^2+1}\)

\(\lim _{x\rightarrow \infty}\frac{-1}{4x^2+1}=0\) , \(4x^2+1\neq 0\) với mọi $x$ nên đồ thị hàm số có đúng một tiệm cận ngang \(y=0\)

\(\bullet\) Nếu \(m\neq 0\) :

+) \(m=\frac{-1}{2}\) thì \(y=\frac{2}{(2x+1)(-x^2-4x+2)}\)

\(\lim _{x\rightarrow \infty}y=0\) nên ĐTHS có TCN $y=0$

\(2x+1=0\Leftrightarrow x=\frac{-1}{2}\) nên \(x=-\frac{1}{2}\) là TCĐ.

ĐTHS có nhiều hơn một tiệm cận (loại)

+) \(m\neq \frac{-1}{2}\) thì \((mx^2-2x+1)(4x^2+4m+1)\) là một hàm bậc 4 không có nghiệm \(\frac{1}{2}\)

Suy ra \(\lim _{x\rightarrow \infty}y=0\), ĐTHS có TCN $y=0$

Để ĐTHS chỉ có một tiệm cận thì \((mx^2-2x+1)(4x^2+4m+1)\neq 0\forall x\)

\(\Rightarrow \left\{\begin{matrix} \Delta_{1}'=1-m<0\\ \Delta_{2}=-(4m+1)<0\end{matrix}\right.\Rightarrow m>1\)

Vậy \(m=0\) hoặc \(m>1\)

31 tháng 3 2017

Hỏi đáp Toán