K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

31 tháng 3 2017

y = 2x2 + 2mx + m -1 (Cm). Đây là hàm số bậc hai, đồ thị là parabol quay bề lõm lên phía trên.

a) m = 1 ⇒ y = 2x2 + 2x

Tập xác định D = R

\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty\)

Bảng biến thiên:

Đồ thị hàm số:

b) Tổng quát y = 2x2 + 2mx + m -1 có tập xác định D = R

y′=4x+2m=0⇔\(x=-\dfrac{m}{2}\).

Suy ra y’ > 0 với \(x>-\dfrac{m}{2}\)  và \(y'< 0\)  với \(x< -\dfrac{m}{2}\) tức là hàm số nghịch biến trên \(\left(-\infty;\dfrac{-m}{2}\right)\) và đồng biến trên \(\left(-\dfrac{m}{2};+\infty\right)\)

i) Để hàm số đồng biến trên khoảng (-1, +∞) thì phải có điều kiện (−1,+∞)∈(−\(\dfrac{m}{2}\),+∞)
Hay  \(-\dfrac{m}{2}< -1\)\(\Leftrightarrow m>2\)

ii) Hàm số đạt cực trị tại  \(x=\dfrac{m}{2}\)

Để hàm số đạt cực trị trong khoảng (-1, +∞), ta phải có:

\(-\dfrac{m}{2}\in\left(-1;+\infty\right)\) hay \(-\dfrac{m}{2}>-1\Leftrightarrow m< 2\).

c) (Cm) luôn cắt Ox tại hai điểm phân biệt 

⇔ phương trình 2x2 + 2mx + m – 1 = 0 có hai nghiệm phân biệt.

Ta có:

Δ’ = m2 – 2m + 2 = (m-1)2 + 1 > 0 ∀m

Vậy (Cm) luôn cắt O x tại hai điểm phân biệt.

27 tháng 3 2018

a) Học sinh tự làm.

b) Tiệm cận đứng là đường thẳng x = 3.

Tiệm cận ngang là đường thẳng y = 1.

Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta được

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì Y = 5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.

c) Giả sử M(x0; y0) ∈ (C). Gọi d1 là khoảng cách từ M đến tiệm cận đứng và d2 là khoảng cách từ M đến tiệm cận ngang, ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x0 = 3 +  5  hoặc x0 = 3 - 5

30 tháng 6 2016

a)  . Tập xác định : R {} ;

              và  ;

          Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

         b) Tiệm cận đứng ∆ : x =  .

             A(-1 ; ) ∈ ∆ ⇔  = -1 ⇔ m = 2.

         c) m = 2 => .       

30 tháng 6 2016

a)  . Tập xác định : R {} ;

              và  ;

          Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

         b) Tiệm cận đứng ∆ : x =  .

             A(-1 ; ) ∈ ∆ ⇔  = -1 ⇔ m = 2.

         c) m = 2 => .      

27 tháng 11 2019

a) Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = (a - 1) x 2  + 2ax + 3a - 2.

Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.

Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(y' = 0 chỉ tại x = -2, khi a = 2).

Vậy với a ≥ 2 hàm số luôn đồng biến

b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình

(a - 1) x 2  + 3ax + 9a - 6 = 0

Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ trên, ta được:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Khi a = 3/2 thì

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔  x 2  + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị như trên Hình 1.18

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

như trên Hình 1.19

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

b) Tiệm cận đứng là đường thẳng \(x=3\)

Tiệm cận ngang là đường thẳng \(y=1\)

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 9 2019

Với mọi tham số m ta có :

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

2 tháng 11 2017

a) y = x 4  – 2 x 2

y′ = 4 x 3  – 4x = 4x( x 2  – 1)

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) y′ = 4 x 3  – 4mx = 4x( x 2  – m)

Để (Cm) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và y C T  = 0.

    +) Nếu m ≤ 0 thì  x 2  – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.

    +) Nếu m > 0 thì y’ = 0 khi x = 0; x =  m  hoặc x = - m .

f(√m) = 0 ⇔ m 2  – 2 m 2  + m 3  –  m 2  = 0 ⇔  m 2 (m – 2) = 0 ⇔ m = 2 (do m > 0)

Vậy m = 2 là giá trị cần tìm.