K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2023

Lại có p>q>3 nên q=3k+1, 3k+2 ( k là stn và k>0 )

Loại q=3k+1 vì nếu q=3k+1 thì p=3(k+1) chia hết cho 3 là hợp số( vô lý)

Vậy q=3k+2 nên p=3(k+1)+1

Đặt k=2m, 2m+1

Nếu k=2m thì q=3(2m+1)+1. Mà 3(2m+1) là số lẻ nên q chẵn. Mà q là số nguyên tố và q>2 nên q lẻ ( vô lý)

Vậy k=2m+1

Suy ra \(q^3+p^3=18k^3+162k^2+180k+72\)

Dễ thấy \(180k+72⋮36\)

Cần cm \(18k^3+162k^2⋮36\)

Dễ thấy \(18k^3+162k^2\) chia hết cho 9 (1)

Vì m là số lẻ nên m chia 4 dư 1 hoặc 3

Xét 2 trường hợp suy ra \(18k^3+162k^2\) chia hết cho 4  (2)

Từ (1),(2) và 4 và 9 là 2 số nguyên tố cùng nhau

Suy ra \(18k^3+162k^2⋮36\) 

Vậy ta có điều phải chứng minh

 

 

29 tháng 3 2023

Từ đoạn Suy ra q3+p3=18k3+162k2+180k+72 mình viết nhầm m thành k :))))))))

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

12 tháng 10 2020

\(\text{Đ}k:a=b+c\)

\(min=2=1+1\)

\(\Rightarrow a=2,b=1,c=1\)

\(\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\Rightarrow\frac{2^3+1^3}{2^3+1^3}=\frac{2+1}{2+1}\Leftrightarrow1=1\)

\(\Rightarrow\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\)

12 tháng 10 2020

Xét VT ta có :

\(VT=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)

\(=\frac{\left(a+b\right)\left[\left(b+c\right)^2-\left(b+c\right)b+b^2\right]}{\left(a+c\right)\left[\left(b+c\right)^2-\left(b+c\right)c+c^2\right]}\)

\(=\frac{\left(a+b\right)\left(b^2+2bc+c^2-b^2-bc+b^2\right)}{\left(a+c\right)\left(b^2+2bc+c^2-bc-c^2+c^2\right)}\)

\(=\frac{\left(a+b\right)\left(b^2+bc+c^2\right)}{\left(a+c\right)\left(b^2+bc+c^2\right)}\)

\(=\frac{a+b}{a+c}=VP\)

=> đpcm

18 tháng 11 2016

bài này khó khinh lên đc mình bó tay

18 tháng 11 2016

Đề này b kiếm đâu thế

7 tháng 9 2020

\(\frac{2013n^2+3}{8}\inℤ\Leftrightarrow2013n^2+3⋮8\Leftrightarrow8.251.n^2+5n^2+3⋮8\)

Vì \(8.251.n^2⋮8\) nên  \(5n^2+3⋮8\Leftrightarrow5n^2+3-8⋮8\Leftrightarrow5\left(n^2-1\right)⋮8\)

Vì 5 và 8 là 2 số nguyên tố cùng nhau nên \(n^2-1⋮8\Leftrightarrow\left(n-1\right)\left(n+1\right)⋮8\)

Vì các số nguyên tố lớn hơn 2 đều lẻ nên sẽ có dạng (4k+1) hoặc (4k+3), k là số tự nhiên

\(\Rightarrow\left(n-1\right)\left(n+1\right)=\orbr{\begin{cases}\left[\left(4k+1\right)-1\right]\left[\left(4k+1\right)+1\right]=4k\left(4k+2\right)⋮8\\\left[\left(4k+3\right)-1\right]\left[\left(4k+3\right)+1\right]=\left(4k+2\right)\left(4k+4\right)⋮8\end{cases}}\)

(Vì (4k+2) là số chẵn và (4k), (4k+4) đều chia hết cho 4 nên tích của chúng chia hết cho 8)                     ---->đpcm

28 tháng 2 2020

Ta có: \(a+b=1\Rightarrow2\sqrt{ab}\le1\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)

Lại có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^2-ab+b^2=\left(a+b\right)^2-3ab\ge1-\frac{3}{4}=\frac{1}{4}\)

Dấu "=" xảy ra khi a = b = \(\frac{1}{2}\)

28 tháng 2 2020

\(VT-VP=\frac{4\left(a+1\right)\left(b+1\right)\left(a-b\right)^2+\left(2a^2+2b^2+a+b-2\right)^2}{4\left(a+b+2\right)}\ge0\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)