K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

( bn xem lại đầu bài giúp mk nha! )

ta có: \(f_{\left(x\right)}=3x^{1800}.x^{200}+5+4x^{101}.x^{99}+3x^{15}.x^5+2.x^2+2000\)

          \(f_{\left(x\right)}=3x^{2000}+4x^{200}+3x^{20}+2x^2+2005\)

mà \(3x^{2000}\ge0;4x^{200}\ge0;3x^{20}\ge0;2x^2\ge0\)

\(\Rightarrow3x^{2000}+4x^{200}+3x^{20}+2x^2\ge0\)

mà \(2005>0\Rightarrow3x^{2000}+4x^{200}+3x^{20}+2x^2+2005>0\)

=> Không tồn tại giá trị của x để f(x) =0

6 tháng 6 2019

a,Bạn có thể tự làm

b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)

Để f(x)+g(x)-h(x)=0

thi x(2x+3)=0

suy ra x=0 hoặc x=-3/2

c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x

Chúc bạn học tốt!

6 tháng 6 2019

a) \(f\left(x\right)=4x^2+3x-2\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)

12 tháng 4 2016

a,F(-1/2)=4.-1/2^2+3.-1/2-2

=F(-1/2)=-5/2

7 tháng 4 2016

a, f(x) = (2x4 - x4) + (5x3 - x- 4x3) + ( -x2 + 3x2) + 1

f(x) = x4 + 2x2 +1

b, f(1) = 14 + 2.12 + 1 = 1 + 2 + 1= 4

f(-1) = (-1)4 + 2.(-1)2 + 1 = 1 + 2 +1 =4

c,Có x4 >= 0      Vx  

2x2 >= 0         Vx

=> x4 + 2x2 + 1 >= 1 > 0 

=> f(x) ko có nghiệm

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

18 tháng 4 2021

Ta có:

\(F\left(x\right)=\frac{5}{4}x^2+2x+2\)

\(F\left(x\right)=\frac{1}{4}+x^2+x+x+2\)

\(F\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+2+\frac{1}{4}\)

\(F\left(x\right)=x\left(x+1\right)+\left(x+1\right)+\frac{8}{4}+\frac{1}{4}\)

\(F\left(x\right)=\left(x+1\right)\left(x+1\right)+\frac{9}{4}\)

\(F\left(x\right)=\left(x+1\right)^2+\frac{9}{4}\)

Ta có:

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)+\frac{9}{4}\ge\frac{9}{4}\)

=> Đa thức \(F\left(x\right)\)không thể nhận giá trị \(0\)

21 tháng 4 2017

a) A(x) = f(x) + g(x)

= (3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x) + (3x - x2 + 5 - 2x5 - 3x4 + 6x3)

= 3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x + 3x - x2 + 5 - 2x5 - 3x4 + 6x3

= x2 + 7x

Vậy A(x) = x2 + 7x

b) Đặt A(x) = 0, ta có:

A(x) = x2 + 7x = 0

=> x(x + 7) = 0

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+7=0\Rightarrow x=-7\end{matrix}\right.\)

Vậy nghiệm của A(x) là x = 0 hoặc x = -7

21 tháng 4 2017

Cảm ơn cậu rất nhiều