Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)Ta có:
\(f\left(x\right)=2x^2-3x-\left(5x^2+4x\right)+4x\left(x+1\right)+1\)
\(=2x^2-3x-5x^2-4x+4x^2+4x+1\)
\(=x^2-3x+1\)
\(b.\)Tại \(x=-1\)thì \(g\left(x\right)=0\)nên:
\(g\left(-1\right)=0\)\(\Leftrightarrow a\left(-1\right)^2+b\left(-1\right)-2=0\)
\(\Leftrightarrow a.1+\left(-b\right)=0+2\)
\(\Leftrightarrow a-b=2\) \(\left(1\right)\)
Tại: \(x=2\)thì \(g\left(2\right)=0\)nên:
\(g\left(2\right)=0\)\(\Leftrightarrow a.2^2+b.2-2=0\)
\(\Leftrightarrow4a+2b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta tìm được \(a=1\)và \(b=-1\)
Lỡ nhấn nút gửi, làm tiếp nhé:
\(c.\)Với \(a=1\)và \(b=-1\)thì \(g\left(x\right)=x^2-x-2\)
Ta có: \(g\left(x\right)=x^2-1-x-1=\left(x^2-1\right)-\left(x+1\right)=\left(x^2-x+x-1\right)-\left(x+1\right)\)
\(=\left[x\left(x-1\right)+x-1\right]-\left(x+1\right)=\left(x+1\right)9x-1-\left(x+1\right)=\left(x+1\right)\left(x-1-1\right)\)
Vậy: \(g\left(x\right)=\left(x-2\right)\left(x+1\right)\)
Ta có: \(h\left(x\right)==f\left(x\right)-g\left(x\right)=x^2-3x+1-\left(x^2-x-2\right)=-2x+3\)
\(h\left(x\right)=0\)\(\Leftrightarrow-2x+3=0\Leftrightarrow-2x=0-3=-3\Leftrightarrow z=\left(-3\right):\left(-2\right)\Leftrightarrow x=\frac{3}{2}\)
Khi \(a=\frac{3}{2}\)thì \(f\left(a\right)-g\left(a\right)=0\Leftrightarrow f\left(a\right)=g\left(a\right)\)
Chắc vậy !!!
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
:))
Ta có:
h(x)= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-( 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
=> h(x)=-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2)
=> h(x)=x2+5x-2
b,
Cho x2+5x-2=0
=> ... tự giải :))
a,f(x)=2x^3+3x^2-2x+3
g(x)=2x^3+3x^2-7x+2
h(x)=f(x)-g(x)=(2x^3+3x^2-2x+3)-(2x^3+3x^2-7x+2)
=2x^3+3x^2-2x+3-2x^3-3x^2+7x-2
=(2x^3-2x^3)+(3x^2-3x^2)+(-2x+7x)+(3-2)
=5x+1
b,Đặt_h(x)=5x+1=0
5x=0-1
5x=-1
x=-1/5
Vậy_nghiệm_của_đa_thức_h(x)_là_-1/5
ta có:
F(x) + G(x) - H(x) = 0
=> (42 + 3x - 2) + (3x2 - 2x + 5) - [x(5x - 2) + 3] = 0
=> 42 + 3x - 2 + 3x2 - 2x + 5 - (5x2 - 2x +3) = 0
=> 42 + 3x - 2 + 3x2 - 2x + 5 - 5x2 + 2x - 3 = 0
=> ( 42 - 2 + 5 - 3) + (3x - 2x + 2x) + (3x2 - 5x2) = 0
=> 16 + 3x - 2x2 = 0
=> 3x - 2x2 = 0 - 16 = -16
=> x (3 - 2x) = -16
rồi tính ra như tìm nghiệm........
mình chỉ viết vắn tắt thôi, bạn thông cảm nhé
a,Bạn có thể tự làm
b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)
Để f(x)+g(x)-h(x)=0
thi x(2x+3)=0
suy ra x=0 hoặc x=-3/2
c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x
Chúc bạn học tốt!
a) \(f\left(x\right)=4x^2+3x-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)