Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)
\(=1-\frac{2n+1}{\left(n+1\right)^2}\)
Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)
Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)
\(\Rightarrow A=\frac{4032}{2017}\)
Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)
\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)
\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)
\(A=\frac{2^2-1^2}{\left(1.2\right)^2}+\frac{3^2-2^2}{\left(2.3\right)^2}+\frac{4^2-3^2}{\left(3.4\right)^2}+...+\frac{100^2-99^2}{\left(99.100\right)^2}\)
\(A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)
\(A=1-\frac{1}{100^2}=\frac{9999}{10000}\)
Bạn thử giải câu này xem
NHỚ ĐỌC KỸ ĐỀ ĐẤY
https://olm.vn/hoi-dap/detail/211451950700.html?pos=476647086293
\(x\left(x+2\right)\left(x^2+2x+2\right)+1\)
\(=\left(x^2+2x\right)\left(x^2+2x+2\right)+1\)
Đặt: \(x^2+2x=t\)
khi đó: \(\left(x^2+2x\right)\left(x^2+2x+2\right)+1=t\left(t+2\right)+1=\left(t+1\right)^2\)
\(=\left(x^2+2x+1\right)^2=\left(x+1\right)^4\)
b) Xét: \(\left(n+1\right)^2-n^2=\left(n+1+n\right)\left(n+1-n\right)=2n+1\)
Khi đó:
\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2.\left(n+1\right)^2}\)
\(A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(A=1-\frac{1}{\left(n+1\right)^2}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+..........+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{x\left(x+1\right)}\right)=\frac{4028}{2015}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{x}-\frac{1}{x+1}=\frac{4028}{2015}:2\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow x+1=2015\Rightarrow x=2014\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}\right)=1\frac{2013}{2015}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{2013}{2015}\div2\)
\(1-\frac{1}{x+1}=\frac{2014}{2015}\)
\(\frac{1}{x+1}=1-\frac{2014}{2015}\)
\(\frac{1}{x+1}=\frac{1}{2015}\)
\(x+1=2015\)
\(x=2015-1\)
\(x=2014\)
\(P=1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=2-\frac{1}{n+1}=\frac{2\left(n+1\right)}{n+1}-\frac{1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2n+1}{n+1}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
Rút gọn biểu thức trên
Ta có: \(\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(...........\)
\(\frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=1-\frac{1}{n}\)
Tử số = \(1.2.4+2.3.5+3.4.6+...+100.101.103\)
\(=1.2.\left(3+1\right)+2.3.\left(4+1\right)+3.4.\left(5+1\right)+...+100.101.\left(102+1\right)\)
\(=1.2.3+1.2+2.3.4+2.3+3.4.5+3.4+...+100.101.102+100.101\)
\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)+\left(1.2+2.3+3.4+...+100.101\right)\)
Mẫu số = \(1.2^2+2.3^2+3.4^2+...+100.101^2\)
\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+3.4.\left(5-1\right)+...+100.101.\left(102-1\right)\)
\(=1.2.3-1.2+2.3.4-2.3+3.4.5-3.4+...+100.101.102-100.101\)
\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)-\left(1.2+2.3+3.4+...+100.101\right)\)
đặt \(A=1.2.3+2.3.4+3.4.5+...+100.101.102\) và \(B=1.2+2.3+3.4+...+100.101\)
bạn tự tính : \(A=\frac{100.101.102.103}{4}=25.101.102.103\); \(B=\frac{100.101.102}{3}=100.101.34\)
rồi thay vào tìm P=\(\frac{A+B}{A-B}\)