K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

untitled.JPG

c) OM cắt CD tại F

Ta có OK.OM=OC2=R2OK.OM=OC2=R2

ΔOHM∼ΔOKF⇒OHOK=OMOFΔOHM∼ΔOKF⇒OHOK=OMOF

⇒OF=OK.OMOH=R2OH⇒OF=OK.OMOH=R2OH (không đổi)

mà OF nằm trên đường cố định nên F là điểm cố định khi M thay đổ

25 tháng 5 2018

c)OM cắt CD tại F

Ta có \(OK.OM=OC^2=R^2\)

\(\Delta OHM~\Delta OKF\Rightarrow\frac{OH}{OK}=\frac{OM}{OF}\)

\(OF=\frac{OK.OM}{OH}=\frac{R^2}{OH}\)( không đổi)

mà OF nằm trên đường cố định nên F là điểm cố định khi M thay đổi

1 tháng 7 2019

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

1 tháng 7 2019

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

7 tháng 4 2020

Lỗi không vẽ được nha bạn !!! 

a) Xét tứ giác ABOC có : 

ABO + ACO = 90O + 90O =180O nên tứ giác ABOC nội tiếp ( đpcm ) 

b) Xét \(\Delta\)MBN và \(\Delta\)MCB có : 

M chung

MBN = MCB ( cùng chắn cung BN  ) 

=>  \(\Delta\)MBN ~ \(\Delta\)MCB ( g - g ) nên \(\frac{MB}{MC}=\frac{MN}{MB}\Leftrightarrow MB^2=MN.MC\left(đpcm\right)\)

c) Xét \(\Delta\)MAN và \(\Delta\)MCA có góc M chung 

Vì M là trung điểm của AB nên MA = MB 

Theo câu b ta có : MA2 = MN . MC <=> \(\frac{MA}{MN}=\frac{MC}{MC}\)

Do đó \(\Delta\)MAN ~ \(\Delta\)MCA  ( c - g - c ) 

=> góc  MAN =góc MCA = góc NCA ( 1 ) 

mà : góc  NCA = góc NDC ( cùng chắn cung NC )                ( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : góc  MAN = góc  NDC hay góc  MAN  = góc ADC (đpcm ) 

22 tháng 5 2018

A B O C I P M K Q

a) Đường tròn (O) có đường kính AB và điểm C nằm trên cung AB => ^ACB=900 hay ^PCB=900

Xét tứ giác BCPI: ^PCB=900; ^PIB=900 => Tứ giác BCPI nội tiếp đường tròn (Tâm là trung điểm BP)

b) Xét \(\Delta\)AMB: AC\(\perp\)BM; MI\(\perp\)AB; AC cắt MI tại P => P là trực tâm của \(\Delta\)AMB

Dễ thấy: BK\(\perp\)AM => B;P;K là 3 điểm thẳng hàng (đpcm).

 c) Nhận xét: Khi BC=R thì BC=OC=OB=OA => \(\Delta\)ABC là tam giác nửa đều có ^CBA=600

=> ^ACO=300. Do AQ là tiếp tuyến của (O) nên ^ACO+^QCA=900 => ^QCA = 600 (1)

Theo t/c 2 tiếp tuyến cắt nhau => QA=QC (2)

Từ (1) và (2) => \(\Delta\)AQC là tam giác đều => AQ=AC

Dễ có: AC=\(\sqrt{3}R\)=> AQ=\(\sqrt{3}R\)

Xét \(\Delta\)MIB: ^MBI=600; ^MIB=900 => \(\Delta\)MIB là tam giác nửa đều => BI= BM/2

Để ý thấy I là trung điểm OA => BI=3/2R => BM = 2.3/2R = 3R

Dựa vào ĐL Pytagore, ta tính được: \(MI^2=9R^2-\frac{9}{4}R^2=R^2.\left(\frac{36-9}{4}\right)=\frac{R^2.27}{4}\)

\(\Rightarrow MI=\frac{\sqrt{27}.R}{2}\)

\(\Rightarrow S_{QAIM}=\frac{\left(\sqrt{3}R+\frac{\sqrt{27}R}{2}\right).\frac{R}{2}}{2}=\frac{R.\left(\sqrt{3}+\frac{3\sqrt{3}}{2}\right).\frac{R}{2}}{2}\)\(=\frac{R^2.\frac{5\sqrt{3}}{4}}{2}=\frac{5\sqrt{3}.R^2}{8}\)

Vậy \(S_{QAIM}=\frac{5\sqrt{3}.R^2}{8}\).

21 tháng 5 2021

chung minh amci noi tiep

 

7 tháng 4 2020

Mình chỉ biết làm câu a, thoi nhé thông cảm , :<<<<

a, Ta có : \(OB \perp AB\Rightarrow\widehat{oBa}=90^o\)

\(OC \perp AC \Rightarrow\widehat{oCa}=90^o\)

Xét tứ giác ABOC có : \(\widehat{oBa}=\widehat{oCa}=90^o\)

=> Tứ giác ABOC nội tiếp ( Tổng 2 góc = 180o )