K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

Lỗi không vẽ được nha bạn !!! 

a) Xét tứ giác ABOC có : 

ABO + ACO = 90O + 90O =180O nên tứ giác ABOC nội tiếp ( đpcm ) 

b) Xét \(\Delta\)MBN và \(\Delta\)MCB có : 

M chung

MBN = MCB ( cùng chắn cung BN  ) 

=>  \(\Delta\)MBN ~ \(\Delta\)MCB ( g - g ) nên \(\frac{MB}{MC}=\frac{MN}{MB}\Leftrightarrow MB^2=MN.MC\left(đpcm\right)\)

c) Xét \(\Delta\)MAN và \(\Delta\)MCA có góc M chung 

Vì M là trung điểm của AB nên MA = MB 

Theo câu b ta có : MA2 = MN . MC <=> \(\frac{MA}{MN}=\frac{MC}{MC}\)

Do đó \(\Delta\)MAN ~ \(\Delta\)MCA  ( c - g - c ) 

=> góc  MAN =góc MCA = góc NCA ( 1 ) 

mà : góc  NCA = góc NDC ( cùng chắn cung NC )                ( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : góc  MAN = góc  NDC hay góc  MAN  = góc ADC (đpcm ) 

7 tháng 4 2020

Mình chỉ biết làm câu a, thoi nhé thông cảm , :<<<<

a, Ta có : \(OB \perp AB\Rightarrow\widehat{oBa}=90^o\)

\(OC \perp AC \Rightarrow\widehat{oCa}=90^o\)

Xét tứ giác ABOC có : \(\widehat{oBa}=\widehat{oCa}=90^o\)

=> Tứ giác ABOC nội tiếp ( Tổng 2 góc = 180o )

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

2 tháng 5 2020

Nếu cậu chưa thấy hình thì vào thống kê hỏi đáp của tui là thấy nha

~Study well~

:]

1 tháng 7 2019

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

1 tháng 7 2019

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R

9 tháng 7 2019

A B C K M N H O

1) Dễ thấy ^CHN = ^CKN = 900 => Bốn điêm C,H,K,N cùng thuộc đường tròn đường kính CN

Hay tứ giác CNKH nội tiếp đường tròn (CN) (đpcm).

2) Sđ(BCnhỏ = 1200 => ^BOC = 1200 => ^BNC = 1/2.Sđ(BCnhỏ = 1/2.^BOC = 600

Vì tứ giác CNKH nội tiếp (cmt) nên ^KHC = 1800 - ^CNK = 1800 - ^BNC = 1200.

3) Hệ thức cần chứng minh tương đương với:

2KN.MN = AM2 - AN2 - MN2 <=> 2KN.MN = MN.MB - MN2 - AN2 (Vì AM2 = MN.MB)

<=> 2KN.MN = MN.BN - AN2 <=> AN2 = MN(BN - 2KN)

<=> AK2 + KN2 = MN(BK - KN) (ĐL Pytagoras) <=> AK2 + KN.KM = MN.BK

<=> AM2 - (MK2 - KN.KM) = MN.BK (ĐL Pytagoras) <=> AM2 - MK.MN = MN.BK

<=> AM2 = MN(BK + MK) = MN.MB <=> AM2 = AM2 (Hệ thức lượng đường tròn) (Luôn đúng)

Do đó hệ thức ban đầu đúng. Vậy KN.MN = 1/2.(AM- AN2 - MN2) (đpcm).

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

14 tháng 11 2021

a, Vì MA = MC ( tc tiếp tuyến ) 

OA = OC = R 

Vậy OM là đường trung trực AC hay MO vuông AC 

Ta có : ^ACB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

hay AC vuông BC 

lại có AC vuông MO ( cmt ) 

=> OM // BC ( tc vuông góc đến song song ) 

b, Vì MA là tiếp tuyến với A là tiếp điểm suy ra ^MAO = 900

Áp dụng định lí Pytago tam giác MAO vuông tại A

\(MO=\sqrt{AM^2+AO^2}=\sqrt{64+36}=10\)cm 

Gọi MO giao AC = T 

Áp dụng hệ thức : \(AT.MO=AM.AO\Rightarrow AT=\frac{AM.AO}{MO}=\frac{48}{10}=\frac{24}{5}\)cm 

Vì MO là đường trung trực nên AT = TC 

=> AC = 2AT = 24/5 . 2 = 48/5 cm 

24 tháng 4 2020

Có \(\hept{\begin{cases}HK\perp KC\\HI\perp IC\end{cases}\Rightarrow\widehat{HKC}+\widehat{HIC}=90^o+90^o=180^o}\)

=> tứ giác CIHK nội tiếp

Do tứ giác CIHK nội tiếp nên \(45^o=\widehat{ICK}-\widehat{BHI}=\frac{1}{2}sđ\widebat{BM}+\frac{1}{2}sđ\widebat{AN}\)

\(\Rightarrow sđ\widebat{BM}+sđ\widebat{AN}=90^o\)

=> \(sđ\widebat{MN}=sđ\widebat{AB}+\left(sđ\widebat{BM}+sđ\widebat{AN}\right)\)hay MN là đường kính của (O)

=90o+90o=180o

Do MN là đường kính của (O) nên MA _|_ DN, NB_|_ DM

Do đó, H là trực tâm \(\Delta\)DMN hay DH _|_ MN

Do I;K cùng nhìn AB dưới góc 90o nên tứ giác ABIK nội tiếp

=> \(\widehat{CAI}=\widehat{CBK}\)=> \(sđ\widebat{CM}=sđ\widebat{CN}\)

=> C là điểm chính giữa cung MN => CO _|_ MN

Vì AC>BC nên \(\Delta\)ABC không cân tại C

Do đó: C;O;H không thẳng hàng

=> CO//DH

25 tháng 4 2020

Dòng 45o= góc ICK - góc BHI là sao vậy bạn ?