K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

mik sửa hộ cô Linh Chi lại dòng thứ 8 nha:

\(40+a+4+a+4+a=60\)

\(\Rightarrow3a=12\)

\(\Rightarrow a=4\)

\(\Rightarrow n=40+4=44\)

Các bạn bổ sung n=44 nữa nha!

23 tháng 12 2018

bó tay. com

27 tháng 12 2018
Biết chết liền Giải đúng tui đốt nhà
27 tháng 12 2018

Dễ mak nhưng xét hơi nhiều TH thôi :*(

NM
11 tháng 3 2022

rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)

nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)

mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.

vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.

Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2

với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)

Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)

Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)

vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)

27 tháng 3 2018

n = 2007

n = 1989

24 tháng 11 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)

\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{24.25}\right)\)

\(S=\frac{1}{4}-\frac{1}{24.50}\)

24 tháng 11 2018

Dễ thấy với mọi số tự nhiên n > 1 , ta có :

\(\frac{2}{\left(n-1\right).n.\left(n+1\right)}=\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\)

Sử dụng  hệ thức trên cho từng số hạng trong tổng sau :

\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(n-1\right).n.\left(n+1\right)}+\frac{2}{23.24.25}\)

     \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\)

Để ý rằng trong vế phải của hệ thức trên , trừ 2 số hạng đầu và cuối , các số hạng còn lại tạo thành từng cặp đối nhau.

Do đó , có thể rút gọn : 

\(2S=\frac{1}{1.2}-\frac{2}{24.25}=\frac{299}{600}\)

Vậy , ta được \(S=\frac{299}{600}\)

20 tháng 3 2016

Ta có : n+S(n)+S(S(n))=60 nên n<60  (1)

S(n)<=5+9=14  ;  S(S(n))<=9      =>     n>60-14-9=37 (2)

Từ (1) và (2) ta có : 37<n<60 

Lần lượt thử, ta được số cần tìm là 44 ; 50

10 tháng 12 2016

Ta có: n>=S(n)>=S(S(n))

=>3n>=60 =>20<=n<=60

Đặt n=ab (2<=a<=6; 0<=b<=9)

=>20<=ab <=60

<=>2<=a+b<=5+9=14 (1)

Mặt khác: a+b>=2+0=2(2)

Từ (1) (2)=>2<=a+b<=14 (2<=a<=6; 0<=b<=9)

Ta có bảng sau

a+b234567891011121314
n56545250484644424947454341
Kết quảlllT/MllT/MllT/Mlll

Vậy_

15 tháng 8 2018

Ta có : \(n+4=n-1+\)\(5\)

Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)

Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)

\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)

N - 1     1    5
   N  2  6
15 tháng 8 2018

a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)

b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)

vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)

\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)