K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

muốn mink báo cáo hả, lần sau đăng linh tinh nữa là mink báo cáo đó

16 tháng 5 2021

Bài 1 : 

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

Thay vào biểu thức A ta được : 

\(A=\frac{2+4}{4+4}=\frac{6}{8}=\frac{3}{4}\)

b, \(x\ge0;x\ne16\)

\(B=\frac{x}{x-16}-\frac{2}{\sqrt{x}-4}-\frac{2}{\sqrt{x}+4}\)

\(=\frac{x-2\sqrt{x}-8-2\sqrt{x}+8}{x-16}=\frac{x-4\sqrt{x}}{x-16}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}\pm4\right)}=\frac{\sqrt{x}}{\sqrt{x}+4}\)

c, Ta có : \(C=A.B=\frac{\sqrt{x}}{\sqrt{x}+4}.\frac{\sqrt{x}+4}{x+4}=\frac{\sqrt{x}}{x+4}\le0\)

Dấu ''='' xảy ra khi \(x=0\)( em ko chắc ý c lắm vì cũng chưa gặp bh )

trình bày như này thì khi thế x vào mẫu nó là 0 nên băn khoăn :) 

\(x+4\le0\)do \(\sqrt{x}\ge0\)\(\Leftrightarrow x\le-4\)

16 tháng 5 2021

Ta dễ thấy điểm rơi đạt tại \(x=2;y=3;z=4\)

Áp dụng bất đẳng thức AM-GM :

\(A=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\frac{1}{4}\left(x+2y+3z\right)\)

\(\ge2\left(\frac{3}{2}+\frac{3}{2}+1\right)+\frac{1}{4}.20=13\)

Vậy Min A = 13 <=> x = 2 ; y = 3 ; z = 4

28 tháng 9 2017

chả bạn nào kả mới kiểm tra 15 phút xong ko ak

28 tháng 9 2017

v~ mai tui KT 1 tiết rồi