Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
arigato mk đang ôn thi mk đang học lớp 9 sắp thi 10 r hông bít ang năm thi thế nào nữa
Bài 5
\(a - b = 2 <=> b = a - 2\)
Do đó: \(P = 3a^2 + (a-2)^2 + 8\)
\(= 3a^2 + a^2 - 4a + 4 + 8\)
\(= 4a^2 - 4a + 12\)
\(= (2a - 1)^2 + 11\)
Vì \((2a - 1)^2 \geq 0 \) với mọi a nên \(= (2a - 1)^2 + 11 \geq 11 \) hay \(P \geq 11\)
Dấu "=" xảy ra \(\begin{cases} a - b = 2 \\ 2a - 1 = 0 \\\end{cases} <=> \begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)
Vậy giá trị nhỏ nhất của P là 11 tại \(\begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)
câu hình:
a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\angle EDB+\angle EHB=180\)
\(\Rightarrow EDHB\) nội tiếp
b) Xét \(\Delta AHE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle DABchung\\\angle AHE=\angle ADB=90\end{matrix}\right.\)
\(\Rightarrow\Delta AHE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AH}{AD}=\dfrac{AE}{AB}\Rightarrow AB.AH=AD.AE\)
mà \(AH.AB=AC^2\) (hệ thức lượng) \(\Rightarrow AC^2=AD.AE\)
c) Vì \(EF\parallel AB\) \(\Rightarrow\angle CFE=\angle CBA=\angle CDA=\angle CDE\)
\(\Rightarrow CDFE\) nội tiếp mà \(\angle CEF=90\) \((EF\parallel AB,AB\bot CH)\)
\(\Rightarrow\angle CDF=90\Rightarrow CD\bot DF\)
Vì \(\Delta CDF\) vuông tại D có K là trung điểm CF \(\Rightarrow KC=KD\)
\(\Rightarrow\Delta KCD\) cân tại K \(\Rightarrow\angle DKB=2\angle DCB=2\angle DAB=\angle DOB\)
\(\Rightarrow DKOB\) nội tiếp \(\Rightarrow K\in\left(OBD\right)\)
à nhon mik thiếu
Cho a > 0; b > 0; c > 0
Chứng minh bất đẳng thức:
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Bài 1 :
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
Thay vào biểu thức A ta được :
\(A=\frac{2+4}{4+4}=\frac{6}{8}=\frac{3}{4}\)
b, \(x\ge0;x\ne16\)
\(B=\frac{x}{x-16}-\frac{2}{\sqrt{x}-4}-\frac{2}{\sqrt{x}+4}\)
\(=\frac{x-2\sqrt{x}-8-2\sqrt{x}+8}{x-16}=\frac{x-4\sqrt{x}}{x-16}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}\pm4\right)}=\frac{\sqrt{x}}{\sqrt{x}+4}\)
c, Ta có : \(C=A.B=\frac{\sqrt{x}}{\sqrt{x}+4}.\frac{\sqrt{x}+4}{x+4}=\frac{\sqrt{x}}{x+4}\le0\)
Dấu ''='' xảy ra khi \(x=0\)( em ko chắc ý c lắm vì cũng chưa gặp bh )
trình bày như này thì khi thế x vào mẫu nó là 0 nên băn khoăn :)
\(x+4\le0\)do \(\sqrt{x}\ge0\)\(\Leftrightarrow x\le-4\)
Ta dễ thấy điểm rơi đạt tại \(x=2;y=3;z=4\)
Áp dụng bất đẳng thức AM-GM :
\(A=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\frac{1}{4}\left(x+2y+3z\right)\)
\(\ge2\left(\frac{3}{2}+\frac{3}{2}+1\right)+\frac{1}{4}.20=13\)
Vậy Min A = 13 <=> x = 2 ; y = 3 ; z = 4