Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giá bìa của cuốn sách Toán 9 và Văn 9 lần lượt là a(đồng) và b(đồng)
(Điều kiện: a>0; b>0)
Số tiền lãi khi bán 120 cuốn Toán 9 là:
\(120\cdot15\%\cdot a=18a\left(đồng\right)\)
Số tiền lãi khi bán 120 cuốn Văn 9 là:
\(120\cdot10\%\cdot b=12b\left(đồng\right)\)
Theo đề, ta có phương trình:
18a+12b=390000(1)
Tổng số tiền thu được khi bán 120 cuốn Toán9 và 120 cuốn Văn 9 là 3000000 nên ta có:
120(a+b)=3000000
=>a+b=25000(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}18a+12b=390000\\a+b=25000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=15000\\b=10000\end{matrix}\right.\)
Vậy: Giá bìa của cuốn sách Toán 9 là 15000 đồng, của cuốn sách Văn 9 là 10000 đồng
Gọi x là quyển sách toán (x>0)
Gọi y là quyển sách văn (y>0)
Tổng sách văn và toán : x + y =120 (1)
Số tiền quyển sách toán: 30000 – 30000x5%= 28500 (đồng)
Số tiền quyển sách văn: 40000 - 40000x10% = 36000 (đồng)
Tổng số tiền bán sách: 28500x + 36000y = 3 795 000 (đồng) (2)
Từ (1)(2) ta có hpt :
Giải hpt, ta được:
Vậy số quyển sách toán: 70 quyển
Số quyển sách văn: 50 quyển
B12: Để chuẩn bị cho năm học mới học sinh hai lớp 9A và 9B ủng hộ thư viện 738 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó mỗi học sinh lớp 9A ủng hộ 6 quyển sách giáo khoa và 3 quyển sách tham khảo. Mỗi học sinh lớp 9B ủng hộ 5 quyển sách giáo khoa và 4 quyển sách tham khảo .Biết số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh của mỗi lớp
---------------------------------------------
Gọi số học sinh lớp \(9A;9B\) lần lượt là \(x,y\left(x,y\in N^{\times}\right)\)
Theo đề ta có: \(9x+9y=738\left(1\right)\)
Số sách giáo khoa nhiều hơn số sách tham khảo \(166\) quển nên:
\(\left(6x+5y\right)-\left(3x+4y\right)=166\)
\(\Leftrightarrow3x+y=166\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\left\{{}\begin{matrix}9x+9x=738\\3x+y=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=42\\y=40\end{matrix}\right.\)
Vậy ..........
Gọi số học sinh của lớp 9A là x (học sinh), số học sinh lớp 9B là y (học sinh) (ĐK: x,y∈N∗x,y∈N∗)
Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 4y (quyển)
Từ đó ta có:
Số sách giáo khoa cả hai lớp đã ủng hộ là 6x+5y6x+5y (quyển)
Số sách tham khảo cả hia lớp đã ủng hộ là 3x+4y3x+4y (quyển)
Vì cả hai lớp ủng hộ 738 quyển nên ta có phương trình6x+5y+3x+4y=9x+9y=738(1)6x+5y+3x+4y=9x+9y=738(1)
Và số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình (6x+5y)−(3x+4y)=3x+y=166(2)(6x+5y)−(3x+4y)=3x+y=166(2)
Từ (1) và (2) ta có hệ phương trình
{9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm){9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm)
Vậy số học sinh của lớp 9A là 42 học sinh, số học sinh lớp 9B là 40 học sinh.
Gọi số học sinh của lớp 9A,9C9A,9C lần lượt là x,yx,y ( học sinh ) (ĐK:x,y>0(ĐK:x,y>0
Theo bài ra ta có :
{Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển){Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
{Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển){Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển)
⇒⇒ {Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển){Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển)
+)+) Cả 22 lớp ủng hộ thư viện 738738 quyển sách nên ta có phương trình.
6x+5y+3x+4y=7386x+5y+3x+4y=738
⇔9x+9y=738⇔9x+9y=738
⇔x+y=82⇔x+y=82 (1)(1)
+)+) Số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166166 quyển nên ta có phương trình.
(6x+5y)−(3x+4y)=166(6x+5y)-(3x+4y)=166
⇔3x+y=166⇔3x+y=166 (2)(2)
Từ (1);(2)⇒(1);(2)⇒ {x+y=823x+y=166{x+y=823x+y=166
⇔⇔{3x+3y=246(3)3x+y=166(4){3x+3y=246(3)3x+y=166(4)
Lấy (3)−(4)(3)-(4) ta được : 3x+3y−(3x+y)=246−1663x+3y-(3x+y)=246-166
⇔2y=80⇔2y=80
⇔y=40(TM)⇔y=40(TM)
(3)⇒x=42(TM)(3)⇒x=42(TM)
Vậy: Số học sinh của lớp 9A9A là 4242 hs
Số học sinh của lớp 9C9C là 4040 hs
1. Nhóm đó có số học sinh là : 8 + 14 - 5 = 17 ( em )
2. A) Sau khi bán 2 món đầu tiên thì số tiền lãi có được là:
8% x 100000 + 10% x 150000 = 8000 + 15000 = 23000 ( đồng )
B) Món thứ 3 có giá tiền là : 909 000 - 23000 - 100000 - 150000 = 636 000 ( đồng )
Nên món 3 có giá mua là : 636000 : 106% x 100% = 600000 ( đồng ).