Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=1+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{50\cdot51}\)
\(Q=1+2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{50\cdot51}\right)\)
\(Q=1+2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(Q=1+2\cdot\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(Q=1+\frac{49}{51}\)
\(Q=\frac{100}{51}\)
Tính: (1-2/2.3).(1-2/3.4).(1-2/4.5).(1-2/5.4).(1-2/98.99)
mifnh ko chac lam!:))
Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)
\(=\dfrac{2020}{2021}\)
mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)
nên A<1