K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

Ta có :

\(x-y=10\)

\(\Rightarrow\left(x-y\right)^2=100\left(x>y\right)\)

\(\Rightarrow\left(x+y\right)^2-4xy=100\)

\(\Rightarrow\left(x+y\right)^2=100+4xy\)

mà \(x.y=24\)

\(\Rightarrow\left(x+y\right)^2=100+4.24=196\)

\(\Rightarrow\left(x+y\right)^2=14^2\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-4\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}D=x+y=4\\D=x+y=-4\end{matrix}\right.\)

12 tháng 8 2023

Đính Chính

\(x+y=\pm14\)

9 tháng 8 2020

Bài làm:

Sửa đề:

Ta có: \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+y\right)\)

\(B=2x\left(y-z\right)-\left(y-z\right)\left(x+y\right)\)

\(B=\left(y-z\right)\left(2x-x-y\right)\)

\(B=\left(x-y\right)\left(y-z\right)\)

Với x=18 ; y=24 ; z=10 ta được:

\(B=\left(18-24\right)\left(24-10\right)\)

\(B=\left(-6\right).14=-84\)

8 tháng 4 2016

\(a.\)

Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được  \(a,b\)

Thật vậy, ta có:

\(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow\)  \(a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\)  \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\)  \(\left(a-1\right)^2+\left(b+3\right)^2=0\)   \(\left(1\right)\)

Vì  \(\left(a-1\right)^2\ge0;\)  \(\left(b+3\right)^2\ge0\)  với mọi  \(a,b\)

nên để thỏa mãn đẳng thức \(\left(1\right)\)  thì phải xảy ra đồng thời  \(\left(a-1\right)^2=0\)  và  \(\left(b+3\right)^2=0\)

\(\Leftrightarrow\)  \(a-1=0\)  và  \(b+3=0\)  \(\Leftrightarrow\)  \(a=1\)  và  \(b=-3\)

\(b.\)  Cộng  \(1\) vào mỗi phân thức của biểu thức  \(A\), khi đó, ta có:

\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\)  (do  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

Vậy,  \(A=-3\)

9 tháng 4 2016

Viết rõ hơn được không bạn

5 tháng 2 2020

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

28 tháng 10 2018

\(x+y=1\Rightarrow x=1-y\)        

\(A=x^3+y^3+xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2+y^2\) (vì x + y = 1)

\(=\left(1-y\right)^2+y^2\)

\(=2y^2-2y+1\)

\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)

Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)

Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)

28 tháng 10 2018

\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)

31 tháng 7 2015

bài 1

1,   A= x2-2x6+62-3=(x-6)2-3

         vì (x-6)2​>=0 với mọi x        ( lũy thùa bậc chẵn)

          => (x-6)2-3 <=-3  

            dấu = xảy ra <=> x-6=0

                                        x=6

           vậy Amax=-3 tại x=6

ý b tương tự chỉ cần đẩy -16 ra ngoài rồi làm như ý a

bài 2 nhóm x2+2x và y2 -6y

tách 10 thứ tự 1;3;6 rồi làm như trên


 


 


tách 10 ra thứ tự



 

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)