K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\:x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5=5\)

Vậy biểu thức ko phụ thuộc vào biến x 

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)+2x^4\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+y^3x-y^4+2x^4\)

\(=3x^4-y^4\)

9 tháng 7 2020

mọi người giúp em nhanh với 

10 tháng 5 2019

Tìm min chứ nhỉ?

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}=8\)

\("="\Leftrightarrow x=y=\frac{1}{2}\)

14 tháng 8 2020

a) 2x2 - 4x + 5

= 2( x2 - 2x + 1 ) + 3

= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 3x2 + 2x + 1

= 3( x2 + 2/3x + 1/9 ) + 2/3

= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 10

= -x2 + 6x - 9 - 1

= -( x2 - 6x + 9 ) - 1

= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

d) -x2 + 3x - 3

= -x2 + 3x - 9/4 - 3/4

= -( x2 - 3x + 9/4 ) - 3/4

= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

e) \(\frac{x^2+4x+5}{2}>0\)

Vì 2 > 0

=> x2 + 4x + 5 > 0

=> x2 + 4x + 4  + 1 > 0

=> ( x + 2 )2 + 1 > 0 ( đúng )

=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )

f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)

Vì x2 + 1 ≥ 1 ∀ x

=> -6 + 2x - x2 < 0

=> -x2 + 2x - 1 - 5

= -( x2 - 2x + 1 ) - 5

= -( x - 1 )2 - 5 < 0 ( đúng )

=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )

14 tháng 8 2020

a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)

\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)

Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)

Hay :\(2x^2-4x+5>0\)

Vậy nên BPT luôn đúng với mọi số thực x 

b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)

Hay \(-x^2+6x-10\le-1\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)

\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)

Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)

Hay \(-x^2+3x-3\le0\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

2 câu còn lại bạn nào làm giúp mình nha

27 tháng 8 2020

a)

 x4 + 6x3 + 11x2 + 6x + 1 = 0

<=> ( x2 + 3x + 1 ) 2 = 0

<=> x2 + 3x + 1 = 0                       

EZ

b)

x4 + x3 – 4x2 + x + 1 = 0

<=> ( x - 1 )2 ( x2 + 3x + 1 ) = 0

EZ

c

x4 – 10x3 + 26x2 – 10x + 1 = 0

<=> ( x2 - 6x + 1 ) ( x2 - 4x + 1 ) = 0

EZ

x4 + 7x3 + 14x2 + 14x + 4 = 0

<=> ( x2 + 2x + 2 ) ( x2 + 5x + 2 ) =0

EZ

Mình làm mẫu 4 câu thôi 5 câu sau bạn tự làm nhá

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

9 tháng 9 2020

1. \(x^4+6x^3+11x^2+6x+1=0\)

\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)

\(\Leftrightarrow x^2+3x+1=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

10 tháng 9 2020

2. \(x^4+x^3-4x^2+x+1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)

+) ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

+) x2 + 3x + 1 = 0

<=> ( x + 3/2 )2 - 5/4 = 0

<=> ( x + 3/2 )2 = 5/4

<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)

23 tháng 8 2020

1) \(2x^4+5x^2+2=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2+1=0\\x^2+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-\frac{1}{2}\\x^2=-2\end{cases}}\) (vô lý)

=> pt vô nghiệm

2) \(2x^4-7x^2-4=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\2x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-\frac{1}{2}\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

3) \(x^4-5x^2+4=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)

4) \(2x^4-20x^2+18=0\)

\(\Leftrightarrow x^4-10x^2+9=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

23 tháng 8 2020

1. \(2x^4+5x^2+2=0\)

Vì \(2x^4+5x^2+2\ge2\)

=> Pt trên vô nghiệm

2. \(2x^4-7x^2-4=0\)

\(\Leftrightarrow2x^4+x^2-8x^2-4=0\)

\(\Leftrightarrow x^2\left(2x^2+1\right)-4\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x^2+1=0\left(vo-ly\right)\\x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)