Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=4\left[\left(cos^21^0+cos^289^0\right)+\left(cos^22^0+cos^288^0\right)+...+\left(cos^244^0+cos^246^0\right)+cos^245^0\right]\)
\(=4\left[\left(cos^21^0+sin^21^0\right)+\left(cos^22^0+sin^22^0\right)+...+\left(cos^244^0+sin^244^0\right)+cos^245^0\right]\)
\(=4\left(1+1+...+1+\frac{\sqrt{2}}{2}\right)\)
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
\(\left(cos^21+cos^289\right)+\left(cos^22+cos^288\right)+....+\left(cos^244+cos^246\right)+cos^245-\frac{1}{2}\)
\(=1+1+...+1+\frac{1}{2}-\frac{1}{2}\) ( có 44 số 1 )
= 44
\(=cos^21+cos^289+cos^22+cos^288+...+cos^244+cos^246+cos^245-\frac{1}{2}\)
\(=cos^21+cos^2\left(90-1\right)+cos^22+cos^2\left(90-2\right)+...+cos^244+cos^2\left(90-44\right)+\left(\frac{\sqrt{2}}{2}\right)^2-\frac{1}{2}\)
\(=cos^21+sin^21+cos^22+sin^22+...+cos^244+sin^244\)
\(=1+1+...+1\) (44 số 1)
\(=44\)
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
a) \(cos^275+cos^253+cos^217+cos^237\)
ta áp dụng: \(sin^2a+cos^2a=1\)
ta được: \(\left(cos^275+cos^2\left(90-75\right)\right)+\left(cos^253+cos^2\left(90-53\right)\right)\)
=\(1+1=2\)
b) \(\frac{tan^215-1}{cot75-1}-cos75\)
=\(\frac{\left(tan15-1\right)\left(tan15+1\right)}{tan15-1}-cos75\)
=\(tan15+1-sin15\)=sin15\(\left(\frac{1}{cos15}-1+\frac{1}{sin15}\right)\)
a) \(cos^273^o+cos^253^o+cos^217^o+cos^237^o=\left(cos^273^o+cos^217^o\right)+\left(cos^253^o+cos^237^o\right)\)
\(=\left(cos^273^o+sin^273^o\right)+\left(cos^253^o+sin^253^o\right)=1+1=2\)
b) \(\frac{tan^215^o-1}{cotg75^o-1}-cos75^o=\frac{\left(tan15^o-1\right)\left(tan15^o+1\right)}{tan15^o-1}-cos75^o=tan15^o+1-cos75^o\)
=(\(\left(cos^21+cos^289\right)+\left(cos^22+cos^288\right)+...+cos^245\)
=1+1+..+0.5
mà từ 1 đến 89 có 44 cặp
=>=44.5
Áp dụng 2 quy tác đơn giản: \(cosx=sin\left(90^0-x\right)\)
và \(sin^2x+cos^2x=1\)
Xét \(cos^21^0+cos^22^0+...+cos^289^0-45.0,5\)
\(=\left(cos^21^0+sin^21^0\right)+\left(cos^22^0+sin^22^0\right)+...+\left(cos^244^0+sin^244^0\right)+cos^245^0-22,5\)
\(=1+1+...+1+\left(\frac{1}{\sqrt{2}}\right)^2-22,5\)
\(=44+\frac{1}{2}-22,5=22\)