Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo: Định lí Bezout là phép chia của một đa thức một biến f(x) cho một nhị thức có dạng là x + a thì sẽ có dư là R = f(-a)
VD: Phép chia của đa thức x2 + 3x - 1 cho đa thức x - 2 có dư là:
Đặt f(x) = x2 + 3x - 1
Phép chia f(x) cho x - 2 có dư là: R = f(2)
=> f(2) = 22 + 3.2 - 1
=> f(2) = 4 + 6 - 1
=> f(2) = 9
Vậy dư của phép chia là 9
Gọi đa thức cần tìm là f(x); g(x),r(x), q(x) lần lượt là thương và số dư của f(x) cho x-2,x-3, x2-5x+6
Ta có f(x)= (x2-5x+6).2x+q(x)
Vì bậc của số dư luôn nhỏ hơn bậc của số bị chia mà x2-5x+6 có bậc là 2=> q(x) là đa thức bậc nhất => q(x)=ax+b
=> f(x)= (x2-5x+6).2x+ax+b=(x-2)(x-3).2x+ax+b
Ta cũng có
• f(x) = (x-2).g(x)+2
•f(x)= (x-3).r(x)+7
Ta xét các giá trị của x
+ x=2=> f(x)=2=> 2a+b=2(1)
+ x=3=> f(x) =7=> 3a+b= 7(2)
Lấy (2)-(1) ta có a=5=> b=-12
=> f(x)=(x2-5x+6).2x+5x-12
= 2x3-10x2+12x+5x-12= 2x3-10x2+17x-12
các bạn làm cách nào cũng đc
ko bắt buộc phải dùng định lí bezout
bạn lên google gõ là ra mà bạn
ai giải gimf nha