Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{3^{10}\cdot\left(11+5\right)}{3^9\cdot16}=\dfrac{3^{10}\cdot16}{3^9\cdot16}=3\)
\(B=\dfrac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\dfrac{2^{10}\cdot\left(13+65\right)}{2^8\cdot2^2\cdot26}=\dfrac{2^{10}\cdot78}{2^{10}\cdot26}=3\)
\(C=\dfrac{72^3\cdot54^2}{108^4}=\dfrac{\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2}{\left(3^3\cdot2^2\right)^4}\\ =\dfrac{2^9\cdot3^6\cdot2^4\cdot3^6}{3^{12}\cdot2^8}=\dfrac{2^{13}\cdot3^{12}}{3^{12}\cdot2^8}=2^5=32\)
\(D=\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-\left(3^2\right)^{15}}{2^2\cdot3^{28}}=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}\\ =\dfrac{3^{29}\cdot\left(11-3\right)}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{4\cdot3^{28}}=3\cdot2=6\)
Gợi ý
bn thực hiện phép tính tử mẫu bình thường , khi ra nhưng số trùng nhau bn gạch ra nháp cho đến nhưng số tối giản là ra nha
chúc bn
học tốt
A = \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
= \(\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
= \(\frac{3^{10}.16}{3^9.2^4}\)
= \(\frac{3^{10}.2^4}{3^9.2^4}=3\)
B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
= \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
= \(\frac{2^{10}.78}{2^8.104}\)
= \(\frac{2^{10}.13.2.3}{2^8.2^3.13}\)
= \(\frac{2^{11}.13.3}{2^{11}.13}=3\)
Giải:
E = ( 315 . 4 + 5 . 315) : 316
E = 315 . ( 4 + 5 ) : 316
E = 14348907 . 9 : 43046721
E = 129140163 : 43046721
E = 3
Vậy E = 3
Học tốt!!!
\(E=\left(3^{15}.4+5.3^{15}\right):3^{16}\)
\(E=\left[3^{15}.\left(4+5\right)\right]:3^{16}\)
\(E=\left[3^{15}.9\right]:3^{16}\)
\(E=\left[3^{15}.3^2\right]:3^{16}\)
\(E=3^{17}:3^{16}\)
\(E=3^1=3\)
a, A = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}=\frac{2^{10}.78}{2^{10}.26}=\frac{78}{26}=3\)
Vậy A = 3
b, \(B=\frac{72^3.54^2}{108^4}=\frac{72^3.54^2}{\left(54.2\right)^4}=\frac{72^3.54^2}{54^4.2^4}=\frac{72^3}{54^2.2^4}=\frac{\left(8.9\right)^3}{\left(6.9\right)^2.2^4}\)
\(=\frac{\left(2^3\right)^3.9^3}{6^2.9^2.2^4}=\frac{2^9.9^3}{2^2.3^2.9^2.2^4}=\frac{2^9.9^3}{2^6.9^3}=\frac{2^9}{2^6}=2^3=8\)
Vậy B = 8
c, \(C=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}.3^{30}}{2^2.3^{28}}=\frac{11.3^{29}.3.3^{29}}{2^2.3^{28}}=\frac{\left(11-3\right)3^{29}}{2^2.3^{28}}\)
\(=\frac{2^3.3^{29}}{2^2.3^{28}}=2.3=6\)
Vậy C = 6
d, \(D=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(3.2^{18}\right)^2}{11.2^{35}-\left(2^4\right)^9}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{\left(11-2\right)2^{35}}=\frac{3^2.2}{9}=2\)
Vậy D = 2
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
a)410. 815 = (22)10.(23)15
=220.245
=265
b) 415 . 530 = 415 . (52)15
= 415 . 2515
= (4.25)15
= 10015
c) 2716 : 910 = (33)16 : (32)10
=348 : 320
=328
d)A=\(\frac{72^3.54^2}{108^4}\)
TS:723.542=(2.2.2.3.3)3.(2.3.3.3)2
=23.23.23.33.33.22.32.32.32
=23+3+3+2.33+3+2+2+2
=211.312
MS:1084=(2.2.3.3.3)4
=24. 24.34.34.34
=24+4 . 34+4+4
=28 . 312
\(\Rightarrow\)A=\(\frac{2^{11}.3^{12}}{2^8.3^{12}}\) = 23=8
e)B=\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
TS:310 .11 + 310 .5 = 310 . (11+5)
= 310 . 16
= 310. 24
\(\Rightarrow\)B=\(\frac{3^{10}.2^4}{3^9.2^4}\) = 31=3
a, 7.213 và 216
ta có: 216 = 213. 23 = 213 .8
vì 7. 213 < 213 .8 nên 7.213 <216
D) \(\left(72^4+72^5\right)\div72^4\)
\(=72^4\div72^4+72^5\div72^4\)
\(=1+72\)
\(=73\)
E)\(\left(3^{15}.4+5.3^{15}\right)\div3^{16}\)
\(=\text{[}3^{15}.\left(4+5\right)\text{]}\div3^{16}\)
\(=\left(3^{15}.9\right)\div3^{16}\)
\(=\left(3^{15}.3^2\right)\div3^{16}\)
\(=3^{17}\div3^{16}\)
\(=3\)