Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Có ở trên
a) Khi nào nó là 1 phân số?
b) Khi nào nó là một số nguyên?
\(a,-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Leftrightarrow x=\dfrac{41}{35}\)
\(b,\dfrac{5}{7}-\dfrac{1}{13}+\dfrac{1}{4}=\dfrac{31}{2}-x\\ \Leftrightarrow x=\dfrac{5319}{364}\)
a) \(\left(\frac{4}{13}.\frac{6}{5}+\frac{4}{13}.\frac{2}{5}\right).\left(2x+1\right)^2=\frac{10}{13}\)
\(\left(\frac{4}{13}.\frac{8}{5}\right).\left(2x+1\right)^2=\frac{10}{13}\)
\(\frac{32}{65}.\left(2x+1\right)^2=\frac{10}{13}\)
\(\left(2x+1\right)^2=\frac{10}{13}\div\frac{32}{65}\)
\(\left(2x+1\right)^2=\frac{25}{16}\)
\(\Rightarrow2x+1\in\left\{\frac{5}{4};-\frac{5}{4}\right\}\)
\(\hept{\begin{cases}2x+1=\frac{5}{4}\\2x+1=-\frac{5}{4}\end{cases}\Rightarrow\hept{\begin{cases}2x=\frac{1}{4}\\2x=-\frac{9}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy \(x\in\left\{\frac{1}{8};-\frac{9}{8}\right\}\)
\(x^3-\frac{9}{16}.x=0\)
\(x\left(x^2-\frac{9}{16}\right)=0\)
\(\hept{\begin{cases}x=0\\x^2-\frac{9}{16}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=\frac{9}{16}\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=\pm\frac{3}{4}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{3}{4};-\frac{3}{4}\right\}\)
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
a. 3x ( x + 1 ) - 6 ( x + 1 ) = 0
Có x+1 = x+1
=> 3x = 6
=> x = 2
Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-82x+2x+1+2x+2+...+2x+2015=22019−8
\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8⇔2x(1+2+22+...+22015)=22019−8 (1)
Đặt : A=1+2+2^2+...+2^{2015}A=1+2+22+...+22015
\Rightarrow2A=2+2^2+2^3+...+2^{2016}⇒2A=2+22+23+...+22016
\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)⇒2A−A=(2+22+23+...+22016)−(1+2+22+...+22015)
\Rightarrow A=2^{2016}-1⇒A=22016−1
Khi đó (1) trở thành :
2^x\left(2^{2016}-1\right)=2^{2019}-2^32x(22016−1)=22019−23
\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)⇔2x(22016−1)=23(22016−1)
\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)⇔2x=23(22016−1=0)
\Leftrightarrow x=3⇔x=3
Vậy : x=3x=3
2x+2x+1+...+2x+2015=22019−82�+2�+1+...+2�+2015=22019-8
→2x.1+2x.2+....+2x.22015=22019−8→2�.1+2�.2+....+2�.22015=22019-8
→2x.(1+2+...+22015)=22019−8→2�.(1+2+...+22015)=22019-8
Đặt:
A=1+2+...+22015�=1+2+...+22015
2A=2.(1+2+...+22015)2�=2.(1+2+...+22015)
2A=2+22+...+220162�=2+22+...+22016
2A−A=(2+22+...+22016)−(1+2+...+22015)2�-�=(2+22+...+22016)-(1+2+...+22015)
A=2+22+...+22016−1−2−...−22015�=2+22+...+22016-1-2-...-22015
A=22016−1�=22016-1
Nên:
2x.(1+2+...+22015)=22019−82�.(1+2+...+22015)=22019-8
→2x.(22016−1)=22019−8→2�.(22016-1)=22019-8
→2x=(22019−8):(22016−1)→2�=(22019-8):(22016-1)
→2x=22019−822016−1→2�=22019-822016-1
→2x=23.(22016−1)22016−1→2�=23.(22016-1)22016-1
→2x=23→2�=23
→x=3→�=3
Vậy x=3.
\(2^{2x+1}-4^x=16^x\)
\(\Leftrightarrow2^{2x}.2-4^x=\left(4^2\right)^x\)
\(\Leftrightarrow4^x.2-4^x=4^{2x}\)
\(\Leftrightarrow4^x=4^{2x}\)
\(\Leftrightarrow x=2x\)
\(\Leftrightarrow x=0\)
22x+1−4x=16x
\Leftrightarrow2^{2x}.2-4^x=\left(4^2\right)^x⇔22x.2−4x=(42)x
\Leftrightarrow4^x.2-4^x=4^{2x}⇔4x.2−4x=42x
\Leftrightarrow4^x=4^{2x}⇔4x=42x
\Leftrightarrow x=2x⇔x=2x
\Leftrightarrow x=0⇔x=0