Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)
\(\Leftrightarrow cos^2x-2cosx+1=m\)
\(\Leftrightarrow\left(cosx-1\right)^2=m\)
Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)
\(\Rightarrow0\le m\le4\)
\(\Leftrightarrow4-4cos2x+\left(m-1\right)sin2x+2m-6=0\)
\(\Leftrightarrow\left(m-1\right)sin2x-4cos2x=2-2m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(m-1\right)^2+16\ge\left(2-2m\right)^2\)
\(\Leftrightarrow3m^2-6m-13\le0\)
\(\Rightarrow\frac{3-4\sqrt{3}}{3}\le m\le\frac{3+4\sqrt{3}}{3}\)
Do m nguyên \(\Rightarrow m=\left\{-1;0;1;2;3\right\}\)
\(\Leftrightarrow\left(3sinx-4cosx\right)^2-2\left(3sinx-4cosx\right)\le2m-1\)
Đặt \(3sinx-4cosx=5\left(\frac{3}{5}sinx-\frac{4}{5}cosx\right)=5sin\left(x-a\right)=t\)
\(\Rightarrow-5\le t\le5\)
BPT trở thành: \(t^2-2t+1\le2m\)
\(\Leftrightarrow\left(t-1\right)^2\le2m\)
Để pt nghiệm đúng với mọi x thì \(2m\ge\max\limits_{\left[-5;5\right]}\left(t-1\right)^2\)
Mà \(\left(t-1\right)^2\le\left(-5-1\right)^2=36\)
\(\Rightarrow2m\ge36\Rightarrow m\ge18\)
Có \(2019-18+1=2002\) giá trị
Không đáp án nào đúng
Do \(-1\le sinx\le1\)
\(\Rightarrow\) Để pt đã cho có nghiệm thì:
\(-1\le m+1\le1\)
\(\Rightarrow-2\le m\le0\)
\(\Leftrightarrow1-cos2x-\left(m+1\right)sin2x-1+m=0\)
\(\Leftrightarrow cos2x+\left(m+1\right)sin2x=m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(1^2+\left(m+1\right)^2\ge m^2\)
\(\Leftrightarrow2m\ge-2\Rightarrow m\ge-1\)
Có \(2019-\left(-1\right)+1=2021\) giá trị