Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có : △' = (-2)2-(m+3)
=4-m-3 = 1-m
De ptr co 2 nghiem x1 va x2 thì △' ≥0
=>1-m≥0 =>m≤1
Theo Viei{ x1+x2=4 ; x1x2=m+3
Ta co: |x1-x2|=2 ⇔(x1-x2)2=4
⇔(x1+x2)2-4x1x2=4
⇔42-4(m+3)=4
⇔m=0 (TM)
b/ Ta co: △ = (m-1)2-4(m+6)
=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0
=> m2-6m-23≥0 (*)
Theo viet { x1+x2=1-m ; x1x2=m+6
db <=> ( x1+x2)2-2x1x2=10
⇔ (1-m)2-2(m+6)=10
⇔ m2-4m -21 =0
⇔[m=7 ; m=-3
Thay vao (*) =>m=7 (loai) ; m=-3 (tm)
c/ Ta co :△' = (-m)2-(3m-2)
= m2-3m+2
De ptr co 2 nghiem x1 , x2 thi : △' ≥0
⇔m2-3m+2≥0 (*)
Theo viet { x1+x2=2m ; x1x2=3m-2
db <=> ( x1+x2)2-3x1x2=4
⇔ (2m)2-3(3m-2)=4
⇔ 4m2--9m+2 =0
⇔[m=2 ; m=\(\dfrac{1}{4}\)
Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)
d/ Ta co : △=(-3)2-4(m-2)
=17-4m
De ptr co 2 nghiem x1 , x2 thi : △ ≥0
⇔17-4m≥0
⇔m≤\(\dfrac{17}{4}\)
theo viet{ x1+x2=3 ; x1x2= m-2
⇔(x1+x2)3-3x1x2(x1+x2) =9
⇔33-3.3(m-2)=9
⇔m=4(tm)
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
Phương trình có hai nghiệm phân biệt
<=> \(\Delta'=\left(m+1\right)^2-\left(m+1\right)=\left(m+1\right)\left(m+1-1\right)=m\left(m+1\right)>0\)
<=> \(\orbr{\begin{cases}m>0\\m< -1\end{cases}}\)(@@)
Theo định lí vi et ta có: \(x_1x_2=m+1;x_2+x_2=-2\left(m+1\right)\)
Theo bài ra: \(\left(x_1-1\right)\left(x_2-1\right)< 0\)
<=> \(x_1x_2-\left(x_1+x_2\right)+1< 0\)
<=> 3 ( m + 1 ) + 1 < 0
<=> m < -4/3 thỏa mãn @@
Vậy...
\(\Delta=4m^2+4m+1\)
phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m\ne-\frac{1}{2}\)
theo hệ thức viete : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1.x_2=-m-1\end{matrix}\right.\)
ta có : x12+x22=2
<=> (x1+x2)2-2x1x2-2=0
<=> 4m2+2m+2-2=0
<=> 4m2+2m=0
\(\Leftrightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=0\end{matrix}\right.\)
kết hợp với \(m\ne-\frac{1}{2}\)
=> m=0
câu 1) thì dể rồi nha
câu 2) ta thay \(x=2\) vào : \(\left(x-1\right)^2+2mx+7=0\)
ta có : \(\left(2-1\right)^2+2.m.2+7=0\) \(\Leftrightarrow m=-2\)
vậy \(m=-2\)
\(\Delta=\left(m+2\right)^2-4m=m^2+4>0\) pt luôn có 2 nghiệm pb
Để \(x_1;x_2\ne0\Leftrightarrow m\ne0\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)
\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}>1\Leftrightarrow x_1^2+x_2^2>\left(x_1x_2\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2>0\)
\(\Leftrightarrow\left(m+2\right)^2-2m-m^2>0\)
\(\Leftrightarrow2m+4>0\Rightarrow m>-2\)
Có \(10-\left(-1\right)+1-1=11\) giá trị nguyên của m thỏa mãn (loại \(m=0\))