Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương. hi hi tick nhé
Ta có : \(333^{333}=\left(333^4\right)^{83}\cdot333=\left(...1\right)^{83}\cdot333=\left(...1\right)\cdot333=\left(...3\right)\)
\(555^{555}=\left(...5\right)\)
\(777^{777}=\left(777^4\right)^{194}\cdot777=\left(...1\right)^{194}\cdot777=\left(...1\right)\cdot777=\left(...7\right)\)
Để mình giải giúp bạn nha!!!
Hình như bạn vừa trả lời câu này thì phải: http://vn.answers.yahoo.com/question/ind...
Cũng tương tự như mình vừa chứng minh câu trên.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Coi mỗi cặp chữ số giống như 1 chữ số ta lập được : 1 x 2 x 3 = 6 ( số )
Đó là : 2379ab, ab2379, 23ab79, 79ab23, ab7923, 7923ab.
- Như vậy : Mỗi cặp chữ số : ở hàng đơn vị xuất hiện 2 lần, ở hàng trăm 2 lần, hàng nghìn cũng 2 lần.
Vậy tổng của 6 số hạng trên là :
ababab x 2 + 232323 x 2 + 797979 x 2 = 2 989 869
= ababab x 2 + 464646 + 1595958 = 2 989 869
= ababab x 2 + ( 464646 + 1595958 ) = 2 989 869
= ababab x 2 + 2060604 = 2 989 869
= ababab x 2 = 929 292
= ababab = 929 292 : 2
= ababab = 464646
Vậy AB = 46
Điều kiện:
* Cạnh hình vuông là ước số chung lớn nhất của 75 và 105.
* Ước số đó là một số tự nhiên.
75 = 25 nhân 3 = 5 nhân 5 nhân 3
105 = 15 nhân 7 = 7 nhân 5 nhân 3
<=> ước số chung của 75 và 105 là 5 nhân 3 = 15
Tấm bìa chữ nhật cắt chiều rộng 75cm ra làm 5 phần, mỗi phần 15cm
cắt chiều dài 105cm ra làm 7 phần, mỗi phần 15cm
diện tích hình chữ nhật = 7875cm²
diện tích hình vuông = 225cm²
Số hình vuông cắt được: 7675 chia 225 = 35 tấm
Đáp số:
Cắt được 35 bìa hình vuông, mỗi cạnh của hình vuông là 15cm.
gọi độ dài của cạnh hình vuông nhỏ là a(cm);a thuộc N*.
TA PHẢI CÓ:105chia hết cho a ;75 chia hết cho a và a là lớn nhất nên a thuộc ƯCLN(105;75)
105=3*5*7
75=3*5^2
ƯCLN(105;75)=3*5=15
suy ra:a=15(cm)
trả lời:độ dài lớn nhất của cạnh hình vuông nhỏ là 15cm.
* nếu đúng thì k cho mình nha.xin cảm ơn.I LOVE YOU.