K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 

Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương. hi hi tick nhé

3 tháng 12 2017

Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1 
Với số tự nhiên a có dạng a=3k±1 
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1 
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi. 
Xong. 
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2. 
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là: 
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2. 
=> số đó không phải số chính phương. 


 
3 tháng 12 2017

sao các bạn cứ chép trên mạng thế!!

3 tháng 12 2017

Ta có : \(333^{333}=\left(333^4\right)^{83}\cdot333=\left(...1\right)^{83}\cdot333=\left(...1\right)\cdot333=\left(...3\right)\)

            \(555^{555}=\left(...5\right)\)

            \(777^{777}=\left(777^4\right)^{194}\cdot777=\left(...1\right)^{194}\cdot777=\left(...1\right)\cdot777=\left(...7\right)\)

18 tháng 3 2018

Để mình giải giúp bạn nha!!! 
Hình như bạn vừa trả lời câu này thì phải: http://vn.answers.yahoo.com/question/ind... 
Cũng tương tự như mình vừa chứng minh câu trên. 
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1 
Với số tự nhiên a có dạng a=3k±1 
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1 
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi. 
Xong. 
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2. 
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là: 
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2. 
=> số đó không phải số chính phương. 

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

2 tháng 2 2015

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

16 tháng 1 2017

câu 1 bạn châu sai rồi

9 tháng 8 2017

thoi minh luoi lam minh ko giai het duoc dau

9 tháng 8 2017

- Đề bài bài 4 nhầm nha. 

- Phải là : 19^x + 5^y + 1980z = 1975^430 + 2004