K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Sử dụng pp biến đổi tương đương:

a) \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow \frac{a^2+b^2}{2}\geq \frac{(a+b)^2}{4}\)

\(\Leftrightarrow 4(a^2+b^2)\geq 2(a+b)^2\Leftrightarrow 4(a^2+b^2)\geq 2(a^2+2ab+b^2)\)

\(\Leftrightarrow 2(a^2+b^2)\geq 4ab\Leftrightarrow 2(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow 2(a-b)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xẩy ra khi $a=b$
c)

\(\frac{a^2+b^2+c^2}{3}\geq \left(\frac{a+b+c}{3}\right)^2\) \(\Leftrightarrow \frac{a^2+b^2+c^2}{3}\geq \frac{(a+b+c)^2}{9}\)

\(\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\)

\(\Leftrightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)\geq 0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b=c$

b) \(\frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\)

Áp dụng 2 lần BĐT phần a: \(\frac{a^4+b^4}{2}\geq \left(\frac{a^2+b^2}{2}\right)^2(1)\)

Và: \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\Rightarrow \left(\frac{a^2+b^2}{2}\right)^2\geq \left(\frac{a+b}{2}\right)^4(2)\)

Từ \((1); (2)\Rightarrow \frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\) (đpcm)

Dấu bằng xảy ra khi \(a=b\)

29 tháng 12 2018

a.

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)

Suy ra (*) đúng => đpcm

Dấu "=" xảy ra khi a = b

29 tháng 12 2018

b.

\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)

\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)

\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)

Theo câu a. thì điều này đúng

Dấu "=" khi a=b=c

26 tháng 3 2018

b) \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

= \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

=\(2+\dfrac{a}{b}+\dfrac{b}{a}\)

áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> \(2+\dfrac{a}{b}+\dfrac{b}{a}\ge4\)

<=> \(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)(đpcm)

26 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^3\cdot\dfrac{1}{a}+b^3\cdot\dfrac{1}{b}+c^3\cdot\dfrac{1}{c}\right)^2\)

\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^2+b^2+c^2\right)^2\)

Cần chỉ ra \(\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\left(a,b,c>0\right)\)

Đẳng thức xảy ra khi \(a=b=c=1\)

26 tháng 4 2017

Cauchy-Schwarz 2 bộ (left(sqrt{a^3};sqrt{b^3};sqrt{c^3} ight);left(sqrt{dfrac{1}{a}};sqrt{dfrac{1}{b}};sqrt{dfrac{1}{c}} ight))

(left(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(sqrt{dfrac{a^3.1}{a}}+sqrt{dfrac{b^3.1}{b}}+sqrt{dfrac{c^3.1}{c}} ight)^2)

(Leftrightarrowleft(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(a^2+b^2+c^2 ight)^2)

Bđt cần c/m tương đương với :

(left(a^2+b^2+c^2 ight)^2geleft(a+b+c ight)^2)

(Leftrightarrow a^2+b^2+c^2ge a+b+c) ( vì a,b,c > 0 )

Phản đề :

Xét bộ (left(a;b;c ight)=left(dfrac{1}{4};dfrac{1}{4};dfrac{1}{4} ight))

(Leftrightarrowdfrac{3}{16}gedfrac{3}{4}left(sai ight))

Vậy bđt cần cm không tồn tại với a , b , c > 0

8 tháng 4 2018

tham khảo tại đây-_-

Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 8 | Học trực tuyến

31 tháng 7 2017

3) Biến đổi tương đương:

\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)

\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)

\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0

=> (1) đúng

Dấu "=" xảy ra khi a = b = c

31 tháng 7 2017

4) Ta có: a+b>c ; b+c>a; a+c>b

Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy suy ra được điều phải chứng minh