Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là USC của n+7 và 3n+22 nên
\(n+7⋮d\Rightarrow3\left(n+7\right)=3n+21⋮d\)
\(3n+22⋮d\)
\(\Rightarrow3n+22-\left(3n+21\right)=1⋮d\Rightarrow d=1\)
n+7 và 3n+22 có 1 ước chung duy nhất là 1 nên chúng nguyên tố cùng nhau
Gọi d là ƯCLN(3n+2 và 4n+3)
Ta có: 3n+2 chia hết cho d và 4n+3 chia hết cho d
[3(4n+3)-4(3n+3)] chia hết cho d
=>12n+12-12n+9 chai hết cho d
=>3 chia hết cho d
=> d = 3
Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi
Gọi ƯCLN của 6n+4 và 8n+5 là d ( d thuộc N sao )
=> 6n+4 và 8n+5 đều chia hết cho d
=> 4.(6n+4) và 3.(8n+5) đều chia hết cho d
=> 24n+16 và 24n+15 chia hết cho d
=> 24n+16-(24n+15) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 6n+4 và 8n+5 là 1
=> 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau
=> ĐPCM
k mk nha
Phai chung minh 6n+4va8n+5 co uoc chung la. 1
(6n+4;8n+5)=(6n+4;2n+1)=(4n+3;2n+1)=(2n+2;2n+1)=1
Vay 6n+4 va 8n+5 la hai so nguyen to cung nhau
Gọi d là ƯCLN (20.n + 9 ; 30.n + 13). Ta có :
20.n + 9 chia hết cho d
30.n + 13 chia hết cho d
==> 60.n + 27 chia hết cho d
60.n + 26 chia hết cho d
==> 60.n + 27 - (60.n + 26) chia hết cho d
==> 27 - 26 chia hết cho d
==> 1 chia hết cho d ==> d = 1. ƯCLN (20.n + 9 ; 30.n + 13) = 1.
Vậy 20.n + 9 và 30.n + 13 là hai số nguyên tố cùng nhau.
Gọi d là ƯCLN (20.n + 9 ; 30.n + 13). Ta có :
20.n + 9 chia hết cho d
30.n + 13 chia hết cho d
==> 60.n + 27 chia hết cho d
60.n + 26 chia hết cho d
==> 60.n + 27 - (60.n + 26) chia hết cho d
==> 27 - 26 chia hết cho d
==> 1 chia hết cho d ==> d = 1. ƯCLN (20.n + 9 ; 30.n + 13) = 1.
Vậy 20.n + 9 và 30.n + 13 là hai số nguyên tố cùng nhau.
20n+9 và 30n+13 nguyên tố cùng nhau khi ƯCLN(20n+9;30n+12)=\(\pm\)1
Gọi ƯCLN(20n+9;30n+12) là d
\(\Rightarrow\)20n+9 \(⋮\)d
30n+13 \(⋮\)d
\(\Rightarrow\)3.(20n+9)=60n+27\(⋮\)d
2.(30n+13)=60n+26 \(⋮\)d
\(\Rightarrow\)(60n+27)-(60n+26)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d\(\in\)ƯCLN(1)={1;-1}
Vậy 20n+9 và 30n+13 nguyên tố cùng nhau.
tóm lại cách làm bài này là:
gọi ưcln của những số cần chứng minh là d
sau đó tìm và nhân sao cho số n của 2 số bằng nhau.
VD: như bài trên mk lấy là số 60
sau đó trừ đi lấy kết quả ( bạn yên tâm tất cả kết quả đều là 1 hết, nếu không phải thì đề bài sai)
rồi làm như mình làm ở trên.
bài nào khó thì gửi cho mk nha. mk sẽ giúp bạn nhiệt tình. hi hi....