K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

\(n^4+2n^3-n^2-2n\)

\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Tích của 4 số nguyên liên tiếp chia hết cho 24

=> n4 + 2n3 - n2 - 2n chia hết cho 24.

30 tháng 10 2016

\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)

Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)

 

 
12 tháng 8 2018

bạn cho đề sai vì khi thuế 1 vào pt trên ko chia hết cho 3 bạn coi đề kĩ lại 

17 tháng 8 2018

chia cho38 nha

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)

a: Gọi d=UCLN(2n+1;5n+2)

\(\Leftrightarrow10n+5-10n-4⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(2n+1;5n+2)=1

hay 2n+1/5n+2 là phân số tối giản

b: Gọi d=UCLN(12n+1;30n+2)

\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(12n+1;30n+2)=1

=>12n+1/30n+2là phân số tối giản

c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)

\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)

\(\Leftrightarrow n+1⋮d\)

\(\Leftrightarrow2n+2⋮d\)

\(\Leftrightarrow2n+2-2n-1⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản

23 tháng 9 2020

Với \(n=1\)thì \(7^3+8^3=343+512=855=57.15\)chia hết cho 57

Giả sử \(7^{k+2}+8^{k+2}\)chia hết cho 57

Xét \(7^{k+3}+8^{2k+3}=7^{k+2}.7+8^{2k+1}.8^2\)

\(=7\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\)chia hết cho 57

Mệnh đề đúng với n=1 vì số 111 chia hết cho 3

Bài này áp dụng các quy tắc của MODUL các cách giải khác sẽ khá phức tạp nên nếu bạn chưa học về MODUL thì bạn cũng nên tự nghiên cứu nha :)) Giờ giải thoi :))

\(7^{n+2}+8^{2n+1}=7^2.7^n+8.8^{2n}=49.7^n+8\left(8^2\right)^n=49.7^n+8.64^n\)

Vì \(64\equiv7\left(mod57\right)\)nên \(64^n\equiv7^n\left(mod57\right)\)

\(\Rightarrow49.7^n+64^n\equiv49.7^n+8.7^n\left(mod57\right)\)

Mà \(49.7^n+8.7^n=57.7^n\equiv0\left(mod57\right)\) hay \(57.7^n⋮57\)

\(\Rightarrow7^{n+2}+8^{2n+1}⋮57\)

AH
Akai Haruma
Giáo viên
24 tháng 3 2018

Lời giải:

Ta có: \(4+(2n-1)^4=[(2n-1)^2+2]^2-[2(2n-1)]^2\)

\(=[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]\)

\(\Rightarrow \frac{2n-1}{4+(2n-1)^4}=\frac{2n-1}{[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]}\)

\(=\frac{1}{4}\left(\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)}\right)\)

Do đó:

\(\frac{1}{4+1^4}=\frac{1}{4}(1-\frac{1}{5})\)

\(\frac{3}{4+3^4}=\frac{1}{4}(\frac{1}{5}-\frac{1}{17})\)

\(\frac{5}{4+5^4}=\frac{1}{4}(\frac{1}{17}-\frac{1}{37})\)

......

Do đó:

\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+(2n-1)^4}=\frac{1}{4}(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{17}+...+\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)})\)

\(=\frac{1}{4}(1-\frac{1}{(2n-1)^2+2+2(2n-1)})=\frac{1}{4}(1-\frac{1}{(2n-1+1)^2+1})\)

\(=\frac{1}{4}(1-\frac{1}{4n^2+1})=\frac{n^2}{4n^2+1}\)

Ta có đpcm.

25 tháng 3 2018

n=1 ; \(\dfrac{1}{4+1^4}=\dfrac{1}{5}=\dfrac{1^2}{4.^2+1}=\dfrac{1}{5};dung\)

giả sử n =k đúng \(\Leftrightarrow S=\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}=\dfrac{k^2}{4k^2+1}\) (*)

cần c/m đúng n =k+1 ;

c/m

với n=k+1

\(S=\left(\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}\right)+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)

từ (*) =>\(S=\dfrac{k^2}{4k^2+1}+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)

\(k+1=t\Leftrightarrow k=t-1\)

\(S=\dfrac{t^2-2t+1}{4\left(t^2-2t+1\right)+1}+\dfrac{2t-1}{4+\left(2t-1\right)^4}\)

\(S=\dfrac{t^2-2t+2}{4t^2-8t+5}+\dfrac{2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{\left(t^2-2t+1\right)\left(4t^2+1\right)+2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}\)\(S=\dfrac{t^2\left(4t^2-8t+5\right)}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{t^2}{\left(4t^2+1\right)}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\)

Vậy tổng trên đúng với k +1

theo Quy nạp ta có dpcm

15 tháng 6 2016

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

15 tháng 6 2016

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24