K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.

DD
6 tháng 2 2021

Ta có: \(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)=n^2\left(n+1\right)\left[n^2\left(n+1\right)-2\left(n+1\right)\left(n-1\right)\right]\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Để \(A\)là số chính phương thì \(n^2-2n+2\)là số chính phương. 

Ta có: \(n^2-2n+2< n^2\)(do \(n>1\)

\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)nên \(n^2-2n+2\)không thể là số chính phương. 

Vậy \(A=n^6-n^4+2n^3+2n^2\)không là số chính phương. 

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

6 tháng 8 2017

\(A=n^4+2n^3+2n^2+2n+1\)

\(=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)\)

\(=n^2\left(n^2+2n+1\right)+\left(n^2+2n+1\right)\)

\(=n^2.\left(n+1\right)^2+\left(n+1\right)^2\)

\(=\left(n^2+1\right)\left(n+1\right)^2\)

Vì \(n^2< n^2+1< \left(n+1\right)^2\) nên \(n^2+1\) không thể là số chính phương

\(A=\left(n^2+1\right)\left(n+1\right)^2\)không thể là số chính phương (đpcm)

22 tháng 10 2017

đề có gì sai không bạn.  Nếu n = 4 thì n - n + 2n + 2n = 16 vẫn là số chính phương mà

Bạn xem lại đề đi nhé

11 tháng 8 2016

\(=n^2\left(n^4-n^2+2n+2\right)\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

=\(n^2\left(n+1\right)^2\left(n^2-n+1-n+1\right)\)

\(=n^2\left(n+1\right)^2\left(n-1\right)^2+n^2\left(n+1\right)^2\)

nhận thấy \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)(1)(vì n>1)

vì n>1  <=> 2n>2

             <=> 2n-2>0

             => \(n^2-\left(2n-2\right)< n^2\)

hay         \(n^2-2n+2< n^2\) (2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=> A ko là số chính phương

\(n^6-n^4+2n^3+2n^2\)

\(=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^4\left(n-1\right)+2n^2\right)\)

\(=\left(n+1\right)\left(n^2\left(n^2\left(n-1\right)+2n^2\right)\right)\)

Vậy tích trên ko phải là số chính phương